GV05 commited on
Commit
89094b4
·
1 Parent(s): 8d878ee

my second app!

Browse files
Files changed (3) hide show
  1. app.py +22 -0
  2. black_panter.jpg +0 -0
  3. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPProcessor, CLIPModel
2
+ import gradio as gr
3
+
4
+ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
5
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
6
+
7
+ classes = ["Iron Man", "Captain America", "Thor", "Spider-Man", "Black Widow", "Black Panther","Hulk", "Ant-Man",
8
+ 'Peggy Carter', "Daredevil", "Star-Lord", "Wong", "Doctor Strange","Nick Fury", "Gamora", "Jessica Jones",
9
+ "Nebula", "Falcon", "Winter Soldier", "Rocket", "Hawkeye"]
10
+ text = [f"a photo of {x}" for x in classes]
11
+ def predict(img):
12
+ inputs = processor(text=text, images=img, return_tensors="pt", padding=True)
13
+ outputs = model(**inputs)
14
+ logits_per_image = outputs.logits_per_image # this is the image-text similarity score
15
+ probs = logits_per_image.softmax(dim=1).squeeze() # we can take the softmax to get the label probabilities
16
+ return {classes[i] : float(probs[i]) for i in range(len(probs))}
17
+
18
+ title = "Marvel Heroes Classification"
19
+ description = "Using clip for zero-shot classification"
20
+ examples = ["black_panter.jpg"]
21
+ gr.Interface(fn=predict, inputs = gr.inputs.Image(shape = (512,512)), outputs= gr.outputs.Label(),
22
+ examples=examples, title=title, description=description).launch(share=True)
black_panter.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ gradio