Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from huggingface_hub import InferenceClient | |
import cohere | |
# Models, API keys and initialization of API clients | |
COHERE_MODEL = "command-r-plus" | |
HF_MODEL = "meta-llama/Llama-3.2-3B-Instruct" | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") | |
client_hf = InferenceClient(model=HF_MODEL, token=HF_API_KEY) | |
client_cohere = cohere.Client(COHERE_API_KEY) | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
use_cohere: bool | |
): | |
"""Handles chatbot responses based on user input and chat history. | |
This function integrates with either the Cohere API or Hugging Face API to generate AI-based responses. | |
Args: | |
message (str): The latest user message. | |
history (list[tuple[str, str]]): A list of previous exchanges where: | |
- Each tuple contains (user_message, assistant_response). | |
- Example: [("Hello", "Hi there!"), ("How are you?", "I'm good!")] | |
system_message (str): A system-level instruction for the chatbot (e.g., personality, style). | |
max_tokens (int): Maximum number of new tokens the model can generate. | |
temperature (float): Controls randomness (higher = more varied responses). | |
top_p (float): Probability threshold for token selection (higher = more diverse responses). | |
use_cohere (bool): If True, uses Cohere API; otherwise, uses Hugging Face API. | |
Yields: | |
str: The chatbot's response (streamed for Hugging Face, full response for Cohere). | |
""" | |
# Constructing the message history for context | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) # Append current user message | |
response = "" | |
if use_cohere: | |
# Using Cohere API (no streaming support) | |
cohere_response = client_cohere.chat( | |
message=message, | |
model=COHERE_MODEL, | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
response = cohere_response.text | |
yield response # Yield full response immediately | |
else: | |
# Using Hugging Face API (streaming responses) | |
for message in client_hf.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content # Extract generated token | |
response += token | |
yield response # Yield response incrementally | |
# Gradio UI with user-configurable inputs | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System prompt"), # System instruction | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # Token limit | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Randomness control | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), # Probability mass | |
gr.Checkbox(label="Use capable Cohere model instead."), # API selection toggle | |
], | |
) | |
# Start Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |