GaborToth2 commited on
Commit
37bb369
·
1 Parent(s): 8ffd026

full documentation and refactoring.

Browse files
Files changed (1) hide show
  1. app.py +57 -29
app.py CHANGED
@@ -3,45 +3,72 @@ import os
3
  from huggingface_hub import InferenceClient
4
  import cohere
5
 
 
 
 
 
 
6
  HF_API_KEY = os.getenv("HF_API_KEY")
7
- COHERE_API_KEY = os.getenv("COHERE_API_KEY") # Get Cohere API key
8
 
9
- models = ["HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-3.2-3B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
10
- client_hf = InferenceClient(model=models[2], token=HF_API_KEY) # HF Client
11
- client_cohere = cohere.Client(COHERE_API_KEY) # Cohere Client
12
 
13
  def respond(
14
- message,
15
- history: list[tuple[str, str]],
16
- system_message,
17
- max_tokens,
18
- temperature,
19
- top_p,
20
- use_cohere, # Checkbox value
21
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  messages = [{"role": "system", "content": system_message}]
23
 
24
- for val in history:
25
- if val[0]:
26
- messages.append({"role": "user", "content": val[0]})
27
- if val[1]:
28
- messages.append({"role": "assistant", "content": val[1]})
29
 
30
- messages.append({"role": "user", "content": message})
31
 
32
  response = ""
33
 
34
- if use_cohere: # If Cohere is selected
 
35
  cohere_response = client_cohere.chat(
36
  message=message,
37
- model="command-r", # Or "command" depending on your plan
38
  temperature=temperature,
39
  max_tokens=max_tokens
40
  )
41
  response = cohere_response.text
42
- yield response # Yield full response (Cohere doesn't stream)
43
 
44
- else: # If HF is selected
 
45
  for message in client_hf.chat_completion(
46
  messages,
47
  max_tokens=max_tokens,
@@ -49,21 +76,22 @@ def respond(
49
  temperature=temperature,
50
  top_p=top_p,
51
  ):
52
- token = message.choices[0].delta.content
53
  response += token
54
- yield response
55
 
56
- # Gradio UI
57
  demo = gr.ChatInterface(
58
  respond,
59
  additional_inputs=[
60
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
61
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
62
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
63
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
64
- gr.Checkbox(label="Use Cohere API"), # Checkbox to switch API
65
  ],
66
  )
67
 
 
68
  if __name__ == "__main__":
69
  demo.launch()
 
3
  from huggingface_hub import InferenceClient
4
  import cohere
5
 
6
+ # Model & API setup
7
+ COHERE_MODEL = "command-r-plus"
8
+ HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
9
+
10
+ # Fetch API keys from environment variables
11
  HF_API_KEY = os.getenv("HF_API_KEY")
12
+ COHERE_API_KEY = os.getenv("COHERE_API_KEY")
13
 
14
+ # Initialize clients for Hugging Face and Cohere APIs
15
+ client_hf = InferenceClient(model=HF_MODEL, token=HF_API_KEY)
16
+ client_cohere = cohere.Client(COHERE_API_KEY)
17
 
18
  def respond(
19
+ message: str,
20
+ history: list[tuple[str, str]],
21
+ system_message: str,
22
+ max_tokens: int,
23
+ temperature: float,
24
+ top_p: float,
25
+ use_cohere: bool
26
  ):
27
+ """Handles chatbot responses based on user input and chat history.
28
+
29
+ This function integrates with either the Cohere API or Hugging Face API to generate AI-based responses.
30
+
31
+ Args:
32
+ message (str): The latest user message.
33
+ history (list[tuple[str, str]]): A list of previous exchanges where:
34
+ - Each tuple contains (user_message, assistant_response).
35
+ - Example: [("Hello", "Hi there!"), ("How are you?", "I'm good!")]
36
+ system_message (str): A system-level instruction for the chatbot (e.g., personality, style).
37
+ max_tokens (int): Maximum number of new tokens the model can generate.
38
+ temperature (float): Controls randomness (higher = more varied responses).
39
+ top_p (float): Probability threshold for token selection (higher = more diverse responses).
40
+ use_cohere (bool): If True, uses Cohere API; otherwise, uses Hugging Face API.
41
+
42
+ Yields:
43
+ str: The chatbot's response (streamed for Hugging Face, full response for Cohere).
44
+ """
45
+
46
+ # Constructing the message history for context
47
  messages = [{"role": "system", "content": system_message}]
48
 
49
+ for user_msg, assistant_msg in history:
50
+ if user_msg:
51
+ messages.append({"role": "user", "content": user_msg})
52
+ if assistant_msg:
53
+ messages.append({"role": "assistant", "content": assistant_msg})
54
 
55
+ messages.append({"role": "user", "content": message}) # Append current user message
56
 
57
  response = ""
58
 
59
+ if use_cohere:
60
+ # Using Cohere API (no streaming support)
61
  cohere_response = client_cohere.chat(
62
  message=message,
63
+ model=COHERE_MODEL,
64
  temperature=temperature,
65
  max_tokens=max_tokens
66
  )
67
  response = cohere_response.text
68
+ yield response # Yield full response immediately
69
 
70
+ else:
71
+ # Using Hugging Face API (streaming responses)
72
  for message in client_hf.chat_completion(
73
  messages,
74
  max_tokens=max_tokens,
 
76
  temperature=temperature,
77
  top_p=top_p,
78
  ):
79
+ token = message.choices[0].delta.content # Extract generated token
80
  response += token
81
+ yield response # Yield response incrementally
82
 
83
+ # Gradio UI with user-configurable inputs
84
  demo = gr.ChatInterface(
85
  respond,
86
  additional_inputs=[
87
+ gr.Textbox(value="You are a friendly Chatbot.", label="System prompt"), # System instruction
88
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # Token limit
89
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Randomness control
90
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), # Probability mass
91
+ gr.Checkbox(label="Use capable Cohere model instead."), # API selection toggle
92
  ],
93
  )
94
 
95
+ # Start Gradio interface
96
  if __name__ == "__main__":
97
  demo.launch()