Spaces:
Sleeping
Sleeping
Commit
·
37bb369
1
Parent(s):
8ffd026
full documentation and refactoring.
Browse files
app.py
CHANGED
@@ -3,45 +3,72 @@ import os
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import cohere
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
7 |
-
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
8 |
|
9 |
-
|
10 |
-
client_hf = InferenceClient(model=
|
11 |
-
client_cohere = cohere.Client(COHERE_API_KEY)
|
12 |
|
13 |
def respond(
|
14 |
-
message,
|
15 |
-
history: list[tuple[str, str]],
|
16 |
-
system_message,
|
17 |
-
max_tokens,
|
18 |
-
temperature,
|
19 |
-
top_p,
|
20 |
-
use_cohere
|
21 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
messages = [{"role": "system", "content": system_message}]
|
23 |
|
24 |
-
for
|
25 |
-
if
|
26 |
-
messages.append({"role": "user", "content":
|
27 |
-
if
|
28 |
-
messages.append({"role": "assistant", "content":
|
29 |
|
30 |
-
messages.append({"role": "user", "content": message})
|
31 |
|
32 |
response = ""
|
33 |
|
34 |
-
if use_cohere:
|
|
|
35 |
cohere_response = client_cohere.chat(
|
36 |
message=message,
|
37 |
-
model=
|
38 |
temperature=temperature,
|
39 |
max_tokens=max_tokens
|
40 |
)
|
41 |
response = cohere_response.text
|
42 |
-
yield response # Yield full response
|
43 |
|
44 |
-
else:
|
|
|
45 |
for message in client_hf.chat_completion(
|
46 |
messages,
|
47 |
max_tokens=max_tokens,
|
@@ -49,21 +76,22 @@ def respond(
|
|
49 |
temperature=temperature,
|
50 |
top_p=top_p,
|
51 |
):
|
52 |
-
token = message.choices[0].delta.content
|
53 |
response += token
|
54 |
-
yield response
|
55 |
|
56 |
-
# Gradio UI
|
57 |
demo = gr.ChatInterface(
|
58 |
respond,
|
59 |
additional_inputs=[
|
60 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System
|
61 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
62 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
64 |
-
gr.Checkbox(label="Use Cohere
|
65 |
],
|
66 |
)
|
67 |
|
|
|
68 |
if __name__ == "__main__":
|
69 |
demo.launch()
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import cohere
|
5 |
|
6 |
+
# Model & API setup
|
7 |
+
COHERE_MODEL = "command-r-plus"
|
8 |
+
HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
|
9 |
+
|
10 |
+
# Fetch API keys from environment variables
|
11 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
12 |
+
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
13 |
|
14 |
+
# Initialize clients for Hugging Face and Cohere APIs
|
15 |
+
client_hf = InferenceClient(model=HF_MODEL, token=HF_API_KEY)
|
16 |
+
client_cohere = cohere.Client(COHERE_API_KEY)
|
17 |
|
18 |
def respond(
|
19 |
+
message: str,
|
20 |
+
history: list[tuple[str, str]],
|
21 |
+
system_message: str,
|
22 |
+
max_tokens: int,
|
23 |
+
temperature: float,
|
24 |
+
top_p: float,
|
25 |
+
use_cohere: bool
|
26 |
):
|
27 |
+
"""Handles chatbot responses based on user input and chat history.
|
28 |
+
|
29 |
+
This function integrates with either the Cohere API or Hugging Face API to generate AI-based responses.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
message (str): The latest user message.
|
33 |
+
history (list[tuple[str, str]]): A list of previous exchanges where:
|
34 |
+
- Each tuple contains (user_message, assistant_response).
|
35 |
+
- Example: [("Hello", "Hi there!"), ("How are you?", "I'm good!")]
|
36 |
+
system_message (str): A system-level instruction for the chatbot (e.g., personality, style).
|
37 |
+
max_tokens (int): Maximum number of new tokens the model can generate.
|
38 |
+
temperature (float): Controls randomness (higher = more varied responses).
|
39 |
+
top_p (float): Probability threshold for token selection (higher = more diverse responses).
|
40 |
+
use_cohere (bool): If True, uses Cohere API; otherwise, uses Hugging Face API.
|
41 |
+
|
42 |
+
Yields:
|
43 |
+
str: The chatbot's response (streamed for Hugging Face, full response for Cohere).
|
44 |
+
"""
|
45 |
+
|
46 |
+
# Constructing the message history for context
|
47 |
messages = [{"role": "system", "content": system_message}]
|
48 |
|
49 |
+
for user_msg, assistant_msg in history:
|
50 |
+
if user_msg:
|
51 |
+
messages.append({"role": "user", "content": user_msg})
|
52 |
+
if assistant_msg:
|
53 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
54 |
|
55 |
+
messages.append({"role": "user", "content": message}) # Append current user message
|
56 |
|
57 |
response = ""
|
58 |
|
59 |
+
if use_cohere:
|
60 |
+
# Using Cohere API (no streaming support)
|
61 |
cohere_response = client_cohere.chat(
|
62 |
message=message,
|
63 |
+
model=COHERE_MODEL,
|
64 |
temperature=temperature,
|
65 |
max_tokens=max_tokens
|
66 |
)
|
67 |
response = cohere_response.text
|
68 |
+
yield response # Yield full response immediately
|
69 |
|
70 |
+
else:
|
71 |
+
# Using Hugging Face API (streaming responses)
|
72 |
for message in client_hf.chat_completion(
|
73 |
messages,
|
74 |
max_tokens=max_tokens,
|
|
|
76 |
temperature=temperature,
|
77 |
top_p=top_p,
|
78 |
):
|
79 |
+
token = message.choices[0].delta.content # Extract generated token
|
80 |
response += token
|
81 |
+
yield response # Yield response incrementally
|
82 |
|
83 |
+
# Gradio UI with user-configurable inputs
|
84 |
demo = gr.ChatInterface(
|
85 |
respond,
|
86 |
additional_inputs=[
|
87 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System prompt"), # System instruction
|
88 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # Token limit
|
89 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Randomness control
|
90 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), # Probability mass
|
91 |
+
gr.Checkbox(label="Use capable Cohere model instead."), # API selection toggle
|
92 |
],
|
93 |
)
|
94 |
|
95 |
+
# Start Gradio interface
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|