Spaces:
Sleeping
Sleeping
Commit
·
3bad752
1
Parent(s):
ea5bb32
llama3.1 8b
Browse files- .gitignore +2 -0
- app.py +2 -2
- local_demos/llama_cpp_demo.py +33 -0
- local_demos/transformers_demo.py +24 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
# Byte-compiled / optimized / DLL files
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
|
|
1 |
+
models/
|
2 |
+
|
3 |
# Byte-compiled / optimized / DLL files
|
4 |
__pycache__/
|
5 |
*.py[cod]
|
app.py
CHANGED
@@ -6,8 +6,8 @@ import cohere
|
|
6 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
7 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") # Get Cohere API key
|
8 |
|
9 |
-
models = ["HuggingFaceH4/zephyr-7b-beta", "microsoft/Phi-4-mini-instruct", "meta-llama/Llama-3.2-3B-Instruct"]
|
10 |
-
client_hf = InferenceClient(model=models[
|
11 |
client_cohere = cohere.Client(COHERE_API_KEY) # Cohere Client
|
12 |
|
13 |
def respond(
|
|
|
6 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
7 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") # Get Cohere API key
|
8 |
|
9 |
+
models = ["HuggingFaceH4/zephyr-7b-beta", "microsoft/Phi-4-mini-instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.1-8B-Instruct"]
|
10 |
+
client_hf = InferenceClient(model=models[3], token=HF_API_KEY) # HF Client
|
11 |
client_cohere = cohere.Client(COHERE_API_KEY) # Cohere Client
|
12 |
|
13 |
def respond(
|
local_demos/llama_cpp_demo.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from llama_cpp import Llama
|
4 |
+
|
5 |
+
# Define model path
|
6 |
+
MODEL_PATH = "models/llama3.2_3B_Q4.gguf"
|
7 |
+
MODEL_URL = "https://huggingface.co/prithivMLmods/Llama-3.2-3B-GGUF/resolve/main/Llama-3.2-3B-GGUF.Q4_K_M.gguf?download=true"
|
8 |
+
|
9 |
+
# Download model if not exists
|
10 |
+
if not os.path.exists(MODEL_PATH):
|
11 |
+
print("Downloading model...")
|
12 |
+
with requests.get(MODEL_URL, stream=True) as r:
|
13 |
+
r.raise_for_status()
|
14 |
+
with open(MODEL_PATH, "wb") as f:
|
15 |
+
for chunk in r.iter_content(chunk_size=8192):
|
16 |
+
f.write(chunk)
|
17 |
+
print("Download complete!")
|
18 |
+
|
19 |
+
|
20 |
+
# Load model
|
21 |
+
llm = Llama(model_path=MODEL_PATH, n_ctx=4096)
|
22 |
+
|
23 |
+
# Define system and user prompts
|
24 |
+
system_prompt = "You are a helpful AI assistant."
|
25 |
+
user_prompt = input("User: ")
|
26 |
+
|
27 |
+
# Generate response
|
28 |
+
output = llm.create_chat_completion(
|
29 |
+
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
30 |
+
)
|
31 |
+
|
32 |
+
# Print response
|
33 |
+
print("Assistant:", output["choices"][0]["message"]["content"])
|
local_demos/transformers_demo.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def generate_response(model, tokenizer, prompt, max_length=50):
|
5 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
6 |
+
outputs = model.generate(inputs.input_ids, max_length=max_length, num_return_sequences=1)
|
7 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
8 |
+
return response
|
9 |
+
|
10 |
+
def main():
|
11 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
12 |
+
system_prompt = "You are a helpful assistant."
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
+
|
17 |
+
user_prompt = input("Enter your prompt: ")
|
18 |
+
full_prompt = f"{system_prompt}\n{user_prompt}"
|
19 |
+
|
20 |
+
response = generate_response(model, tokenizer, full_prompt)
|
21 |
+
print("Response:", response)
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
main()
|