import gradio as gr import os from huggingface_hub import InferenceClient import cohere # Models, API keys and initialization of API clients COHERE_MODEL = "command-r-plus" HF_MODEL = "meta-llama/Llama-3.2-3B-Instruct" HF_API_KEY = os.getenv("HF_API_KEY") COHERE_API_KEY = os.getenv("COHERE_API_KEY") client_hf = InferenceClient(model=HF_MODEL, token=HF_API_KEY) client_cohere = cohere.Client(COHERE_API_KEY) def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, use_cohere: bool ): """Handles chatbot responses based on user input and chat history. This function integrates with either the Cohere API or Hugging Face API to generate AI-based responses. Args: message (str): The latest user message. history (list[tuple[str, str]]): A list of previous exchanges where: - Each tuple contains (user_message, assistant_response). - Example: [("Hello", "Hi there!"), ("How are you?", "I'm good!")] system_message (str): A system-level instruction for the chatbot (e.g., personality, style). max_tokens (int): Maximum number of new tokens the model can generate. temperature (float): Controls randomness (higher = more varied responses). top_p (float): Probability threshold for token selection (higher = more diverse responses). use_cohere (bool): If True, uses Cohere API; otherwise, uses Hugging Face API. Yields: str: The chatbot's response (streamed for Hugging Face, full response for Cohere). """ # Constructing the message history for context messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Append current user message response = "" if use_cohere: # Using Cohere API (no streaming support) cohere_response = client_cohere.chat( message=message, model=COHERE_MODEL, temperature=temperature, max_tokens=max_tokens ) response = cohere_response.text yield response # Yield full response immediately else: # Using Hugging Face API (streaming responses) for message in client_hf.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content # Extract generated token response += token yield response # Yield response incrementally # Gradio UI with user-configurable inputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System prompt"), # System instruction gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # Token limit gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Randomness control gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), # Probability mass gr.Checkbox(label="Use capable Cohere model instead."), # API selection toggle ], ) # Start Gradio interface if __name__ == "__main__": demo.launch()