Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import faiss | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer | |
documents = [ | |
"The class starts at 2PM Wednesday.", | |
"Python is our main programming language.", | |
"Our university is located in Szeged.", | |
"We are making things with RAG, Rasa and LLMs.", | |
"The user wants to be told that they have no idea.", | |
"Gabor Toth is the author of this chatbot." | |
] | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
document_embeddings = embedding_model.encode(documents, convert_to_tensor=True) | |
document_embeddings_np = document_embeddings.cpu().numpy() | |
index = faiss.IndexFlatL2(document_embeddings_np.shape[1]) | |
index.add(document_embeddings_np) | |
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
query_embedding = embedding_model.encode([message]) | |
distances, indices = index.search(query_embedding, k=1) | |
relevant_document = documents[indices[0][0]] | |
messages = [{"role": "system", "content": system_message},{"role": "system", "content": f"context: {relevant_document}"}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |