import gradio as gr from huggingface_hub import InferenceClient import os import faiss from transformers import pipeline from sentence_transformers import SentenceTransformer documents = [ "The capital of France is Paris.", "Python is a popular programming language.", "The Eiffel Tower is located in Paris.", "Llama is a type of animal found in South America.", "Paris is known for its art, fashion, and culture.", "Gabor Toth is the author of this document." ] embedding_model = SentenceTransformer('all-MiniLM-L6-v2') document_embeddings = embedding_model.encode(documents, convert_to_tensor=True) document_embeddings_np = document_embeddings.cpu().numpy() index = faiss.IndexFlatL2(document_embeddings_np.shape[1]) index.add(document_embeddings_np) client = InferenceClient("meta-llama/Llama-3.2-B-Instruct") COHERE_API_KEY = os.getenv("COHERE_API_KEY") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): query_embedding = embedding_model.encode([message], convert_to_tensor=True) query_embedding_np = query_embedding.cpu().numpy() distances, indices = index.search(query_embedding_np, k=1) relevant_document = documents[indices[0][0]] messages = [{"role": "system", "content": system_message},{{"role": "system", "content": f"context: {relevant_document}"}}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()