GaborToth2 commited on
Commit
5170abd
·
verified ·
1 Parent(s): b5948c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -79
app.py CHANGED
@@ -1,79 +1,62 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- import os
4
- import cohere
5
-
6
- """
7
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
- """
9
- client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
10
- COHERE_API_KEY = os.getenv("COHERE_API_KEY")
11
- client_cohere = cohere.Client(COHERE_API_KEY)
12
- COHERE_MODEL = "command-r-plus"
13
-
14
- def respond(
15
- message,
16
- history: list[tuple[str, str]],
17
- system_message,
18
- max_tokens,
19
- temperature,
20
- top_p,
21
- use_cohere_api,
22
- ):
23
- messages = [{"role": "system", "content": system_message}]
24
-
25
- for val in history:
26
- if val[0]:
27
- messages.append({"role": "user", "content": val[0]})
28
- if val[1]:
29
- messages.append({"role": "assistant", "content": val[1]})
30
-
31
- messages.append({"role": "user", "content": message})
32
-
33
- response = ""
34
-
35
- if use_cohere_api:
36
- cohere_response = client_cohere.chat(
37
- message=message,
38
- model=COHERE_MODEL,
39
- temperature=temperature,
40
- max_tokens=max_tokens
41
- )
42
- response = cohere_response.text
43
- yield response
44
- else:
45
- for message in client.chat_completion(
46
- messages,
47
- max_tokens=max_tokens,
48
- stream=True,
49
- temperature=temperature,
50
- top_p=top_p,
51
- ):
52
- token = message.choices[0].delta.content
53
- response += token
54
- yield response
55
-
56
-
57
- """
58
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
59
- """
60
- demo = gr.ChatInterface(
61
- respond,
62
- additional_inputs=[
63
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
64
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
65
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
66
- gr.Slider(
67
- minimum=0.1,
68
- maximum=1.0,
69
- value=0.95,
70
- step=0.05,
71
- label="Top-p (nucleus sampling)",
72
- ),
73
- gr.Checkbox(label="Use Cohere API."),
74
- ],
75
- )
76
-
77
-
78
- if __name__ == "__main__":
79
- demo.launch()
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ import os
4
+ import cohere
5
+
6
+ """
7
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
+ """
9
+ client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
10
+ COHERE_API_KEY = os.getenv("COHERE_API_KEY")
11
+ client_cohere = cohere.Client(COHERE_API_KEY)
12
+ COHERE_MODEL = "command-r-plus"
13
+
14
+ def respond(
15
+ message,
16
+ history: list[tuple[str, str]],
17
+ ):
18
+ system_message = "You are a friendly Chatbot."
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ for val in history:
22
+ if val[0]:
23
+ messages.append({"role": "user", "content": val[0]})
24
+ if val[1]:
25
+ messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ messages.append({"role": "user", "content": message})
28
+
29
+ response = ""
30
+
31
+ if use_cohere_api:
32
+ cohere_response = client_cohere.chat(
33
+ message=message,
34
+ model=COHERE_MODEL,
35
+ temperature=temperature,
36
+ max_tokens=max_tokens
37
+ )
38
+ response = cohere_response.text
39
+ yield response
40
+ else:
41
+ for message in client.chat_completion(
42
+ messages,
43
+ max_tokens=max_tokens,
44
+ stream=True,
45
+ temperature=temperature,
46
+ top_p=top_p,
47
+ ):
48
+ token = message.choices[0].delta.content
49
+ response += token
50
+ yield response
51
+
52
+
53
+ """
54
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
55
+ """
56
+ demo = gr.ChatInterface(
57
+ respond,
58
+ )
59
+
60
+
61
+ if __name__ == "__main__":
62
+ demo.launch()