Gaborandi's picture
Update app.py
cfd6947
raw
history blame
2.57 kB
import logging
import pandas as pd
import gradio as gr
from pymed import PubMed
import urllib.parse
import urllib.request
import ipywidgets as widgets
def search_pubmed(search_term, keywords, max_results, tool, email):
# Validate the input
if max_results is None or max_results < 1:
raise ValueError("Max Results must be a positive integer")
# Connect to PubMed database
pubmed = PubMed(tool=tool, email=email)
results = pubmed.query(search_term, max_results=max_results)
# Prepare the lists to store article information
articleList = []
articleInfo = []
# Try to retrieve the articles and process them
try:
for article in results:
articleDict = article.toDict()
articleList.append(articleDict)
except Exception as e:
# Log the error if it occurs
logging.error("Error while processing articles: {}".format(e))
raise
# Store the information of each article in articleInfo
for article in articleList:
pubmedId = article['pubmed_id'].partition('\n')[0]
articleInfo.append({u'pubmed_id': pubmedId,
u'title': article['title'],
u'abstract': article['abstract']
})
# Convert the article information to a Pandas dataframe
cardio_abstract = pd.DataFrame.from_dict(articleInfo)
# Filter the dataframe based on the selected keywords
cardio_abstract = cardio_abstract[keywords]
# Return the filtered dataframe
return cardio_abstract
def download_csv(b):
download_button.description = "Downloading..."
download_button.disabled = True
input_dict = interface.process(raw=False)
search_term = input_dict["Search Term"]
keywords = input_dict["Keywords"]
max_results = input_dict["Max Results"]
dataframe = search_pubmed(search_term, keywords, max_results)
dataframe.to_csv("pubmed_results.csv", index=False)
download_button.description = "Download CSV"
download_button.disabled = False
inputs = [gr.inputs.Textbox(label="Search Term"),
gr.inputs.Checkbox(["pubmed_id", "title", "abstract"], label="Keywords"),
gr.inputs.Slider(minimum=1, maximum=10000, default=100, label="Max Results")]
outputs = [gr.outputs.Dataframe(type="pandas")]
interface = gr.Interface(search_pubmed, inputs, outputs, title="PubMed Search")
result = interface.launch(share=True)
download_button = widgets.Button(description="Download CSV")
download_button.on_click(download_csv)
display(download_button)