Spaces:
Runtime error
Runtime error
Update text.py
Browse files
text.py
CHANGED
@@ -20,7 +20,6 @@ The core idea behind the training procedure is sequential adoption through trans
|
|
20 |
|
21 |
The main benefits of transfer learning in general include the saving of resources and improved efficiency when training new models, so feel free to adopt this model for your type of problem! 🤗
|
22 |
|
23 |
-
Extractive:
|
24 |
The extractive models for this app are using sentence-transformer models, which basically is using a bi-encoder that determines how similar two sentences are. This type of models convert texts into vectors (embedding) that capture semantic information. Additionally, LexRank, an unsupervised graph-based algorithm, is used to determine centrality scores as a post-process step to summarise. The main idea is that sentences "recommend" other similar sentences to the reader. Thus, if one sentence is very similar to many others, it will likely be a sentence of great importance. The importance of this sentence also stems from the importance of the sentences "recommending" it. Thus, to get ranked highly and placed in a summary, a sentence must be similar to many sentences that are in turn also similar to many other sentences.
|
25 |

|
26 |
"""
|
|
|
20 |
|
21 |
The main benefits of transfer learning in general include the saving of resources and improved efficiency when training new models, so feel free to adopt this model for your type of problem! 🤗
|
22 |
|
|
|
23 |
The extractive models for this app are using sentence-transformer models, which basically is using a bi-encoder that determines how similar two sentences are. This type of models convert texts into vectors (embedding) that capture semantic information. Additionally, LexRank, an unsupervised graph-based algorithm, is used to determine centrality scores as a post-process step to summarise. The main idea is that sentences "recommend" other similar sentences to the reader. Thus, if one sentence is very similar to many others, it will likely be a sentence of great importance. The importance of this sentence also stems from the importance of the sentences "recommending" it. Thus, to get ranked highly and placed in a summary, a sentence must be similar to many sentences that are in turn also similar to many other sentences.
|
24 |

|
25 |
"""
|