Spaces:
Sleeping
Sleeping
File size: 6,794 Bytes
541501b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from datetime import datetime
import pytz
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import pandas as pd
from tqdm import tqdm
from collections import defaultdict
import os
from PIL import Image
import shutil
import copy
import numpy as np
import matplotlib.pyplot as plt
from util import transform, train_transform, AnimalDataset
from Nets import CustomResNet18
from deep_translator import GoogleTranslator
from torchcam.methods import SmoothGradCAMpp, XGradCAM, ScoreCAM, GradCAM, GradCAMpp, CAM
import matplotlib.pyplot as plt
from torchcam.utils import overlay_mask
from torchvision.transforms.functional import to_pil_image
from sklearn.preprocessing import LabelEncoder
from functools import lru_cache
IMAGE_PATH = 'src/examples'
RANDOM_IMAGES_TO_SHOW = 20
IMAGES_PER_ROW = 5
CAM_METHODS = {
"GradCAM": GradCAM,
"GradCAM++": GradCAMpp,
"XGradCAM": XGradCAM,
"SmoothGradCAM++": SmoothGradCAMpp,
}
model = CustomResNet18(90).eval()
model.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu')))
cam_model = copy.deepcopy(model)
data_df = pd.read_csv('src/cache/val_df.csv')
def load_random_images():
random_images = list()
for i in range(RANDOM_IMAGES_TO_SHOW):
idx = np.random.randint(0, len(data_df))
p = os.path.join(IMAGE_PATH, data_df.iloc[idx]['path'])
animal = data_df.iloc[idx]['target']
random_images.append((animal, Image.open(p)))
return random_images
def get_class_name(idx):
return data_df[data_df['encoded_target'] == idx]['target'].values[0]
@lru_cache(maxsize=100)
def get_translated(to_translate):
return GoogleTranslator(source="en", target="de").translate(to_translate)
for idx in tqdm(range(90), desc="Translate animals"): get_translated(get_class_name(idx))
def infer_image(image):
image = transform(image)
image = image.unsqueeze(0)
with torch.no_grad():
output = model(image)
distribution = torch.nn.functional.softmax(output, dim=1)
ret = defaultdict(float)
for idx, prob in enumerate(distribution[0]):
animal = f'{get_class_name(idx)} ({get_translated(get_class_name(idx))})'
ret[animal] = prob.item()
return ret
def gradcam(image, alpha, cam_method, layer):
if layer == 'layer1': layers = [model.resnet.layer1]
elif layer == 'layer2': layers = [model.resnet.layer2]
elif layer == 'layer3': layers = [model.resnet.layer3]
elif layer == 'layer4': layers = [model.resnet.layer4]
else: layers = [model.resnet.layer1, model.resnet.layer2, model.resnet.layer3, model.resnet.layer4]
model.eval()
img_tensor = transform(image).unsqueeze(0)
cam = CAM_METHODS[cam_method](model, target_layer=layers)
output = model(img_tensor)
activation_map = cam(output.squeeze(0).argmax().item(), output)
result = overlay_mask(image, to_pil_image(activation_map[0].squeeze(0), mode='F'), alpha=alpha)
cam.remove_hooks()
# height maximal 300px
if result.size[1] > 300:
ratio = 300 / result.size[1]
result = result.resize((int(result.size[0] * ratio), 300))
return result
with gr.Blocks() as demo:
with open('src/header.md', 'r') as f:
markdown_string = f.read()
header = gr.Markdown(markdown_string)
with gr.Row(variant="panel", equal_height=True):
user_image = gr.Image(
type="pil",
label="Upload Your Own Image",
info="You can also upload your own image for prediction.",
scale=1,
)
with gr.Tab("Predict"):
with gr.Column():
output = gr.Label(
num_top_classes=3,
label="Output",
info="Top three predicted classes and their confidences.",
scale=5,
)
predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=1)
predict_mode_button.click(fn=infer_image, inputs=[user_image], outputs=output, queue=True)
with gr.Tab("Explain"):
with gr.Row():
with gr.Column():
cam_method = gr.Radio(
list(CAM_METHODS.keys()),
label="GradCAM Method",
value="GradCAM",
interactive=True,
scale=2,
)
cam_method.description = "Here you can choose the GradCAM method."
cam_method.description_place = "left"
alpha = gr.Slider(
minimum=.1,
maximum=.9,
value=0.5,
interactive=True,
step=.1,
label="Alpha",
scale=1,
)
alpha.description = "Here you can choose the alpha value."
alpha.description_place = "left"
layer = gr.Radio(
["layer1", "layer2", "layer3", "layer4", "all"],
label="Layer",
value="layer4",
interactive=True,
scale=2,
)
layer.description = "Here you can choose the layer to visualize."
layer.description_place = "left"
with gr.Column():
output_cam = gr.Image(
type="pil",
label="GradCAM",
info="GradCAM visualization"
)
gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1)
gradcam_mode_button.click(fn=gradcam, inputs=[user_image, alpha, cam_method, layer], outputs=output_cam, queue=True)
with gr.Tab("Example Images"):
with gr.Column():
placeholder = gr.Markdown("## Example Images")
showed_images = list()
loaded_images = load_random_images()
amount_rows = max(1, (len(loaded_images) // IMAGES_PER_ROW))
for i in range(amount_rows):
with gr.Row():
for j in range(IMAGES_PER_ROW):
animal, image = loaded_images[i * IMAGES_PER_ROW + j]
showed_images.append(gr.Image(
value=image,
label=animal,
type="pil",
interactive=False,
))
if __name__ == "__main__":
demo.queue()
demo.launch() |