File size: 6,792 Bytes
541501b
1eaf2e8
 
 
 
 
 
 
541501b
1eaf2e8
 
 
541501b
1eaf2e8
 
 
541501b
 
1eaf2e8
 
541501b
37a68bf
b43423b
541501b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efde35f
 
541501b
5821c7d
 
541501b
 
 
 
 
 
 
 
8717d3d
541501b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a68bf
 
 
541501b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import copy
import os
import sys
sys.path.append('src')
from collections import defaultdict
from functools import lru_cache

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from deep_translator import GoogleTranslator
from Nets import CustomResNet18
from PIL import Image
from torchcam.methods import GradCAM, GradCAMpp, SmoothGradCAMpp, XGradCAM
from torchcam.utils import overlay_mask
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
from util import transform

IMAGE_PATH = os.path.join(os.getcwd(), 'src/examples')
RANDOM_IMAGES_TO_SHOW = 10
IMAGES_PER_ROW = 5

CAM_METHODS = {
    "GradCAM": GradCAM,
    "GradCAM++": GradCAMpp,
    "XGradCAM": XGradCAM,
    "SmoothGradCAM++": SmoothGradCAMpp,
}

model = CustomResNet18(90).eval()
model.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu')))
cam_model = copy.deepcopy(model)
data_df = pd.read_csv('src/cache/val_df.csv')

def load_random_images():
    random_images = list()
    for i in range(RANDOM_IMAGES_TO_SHOW):
        idx = np.random.randint(0, len(data_df))
        p = os.path.join(IMAGE_PATH, data_df.iloc[idx]['path'])
        p = p.replace('\\', '/')
        p = p.replace('//', '/')
        animal = data_df.iloc[idx]['target']
        if os.path.exists(p):
            random_images.append((animal, Image.open(p)))
    return random_images

def get_class_name(idx):
    return data_df[data_df['encoded_target'] == idx]['target'].values[0]

@lru_cache(maxsize=100)
def get_translated(to_translate):
    return GoogleTranslator(source="en", target="de").translate(to_translate)
for idx in range(90): get_translated(get_class_name(idx))

def infer_image(image):
    image = transform(image)
    image = image.unsqueeze(0)
    with torch.no_grad():
        output = model(image)
    distribution = torch.nn.functional.softmax(output, dim=1)
    ret = defaultdict(float)
    for idx, prob in enumerate(distribution[0]):
        animal = f'{get_class_name(idx)} ({get_translated(get_class_name(idx))})'
        ret[animal] = prob.item()
    return ret

def gradcam(image, alpha, cam_method, layer):
    if layer == 'layer1': layers = [model.resnet.layer1]
    elif layer == 'layer2': layers = [model.resnet.layer2]
    elif layer == 'layer3': layers = [model.resnet.layer3]
    elif layer == 'layer4': layers = [model.resnet.layer4]
    else: layers = [model.resnet.layer1, model.resnet.layer2, model.resnet.layer3, model.resnet.layer4]
    
    model.eval()
    img_tensor = transform(image).unsqueeze(0)
    cam = CAM_METHODS[cam_method](model, target_layer=layers)
    output = model(img_tensor)
    activation_map = cam(output.squeeze(0).argmax().item(), output)
    result = overlay_mask(image, to_pil_image(activation_map[0].squeeze(0), mode='F'), alpha=alpha)
    cam.remove_hooks()
    
    # height maximal 300px
    if result.size[1] > 300:
        ratio = 300 / result.size[1]
        result = result.resize((int(result.size[0] * ratio), 300))
    return result

with gr.Blocks() as demo:
    with open('src/header.md', 'r') as f:
        markdown_string = f.read()
    header = gr.Markdown(markdown_string)
    
    with gr.Row(variant="panel", equal_height=True):
        user_image = gr.Image(
            type="pil",
            label="Upload Your Own Image",
            info="You can also upload your own image for prediction.",
            scale=1,
        )
        
    with gr.Tab("Predict"):
        with gr.Column():
            output = gr.Label(
                num_top_classes=3,
                label="Output",
                info="Top three predicted classes and their confidences.",
                scale=5,
            )
            predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=1)
            predict_mode_button.click(fn=infer_image, inputs=[user_image], outputs=output, queue=True)
    
    with gr.Tab("Explain"):
        with gr.Row():
            with gr.Column():
                cam_method = gr.Radio(
                    list(CAM_METHODS.keys()),
                    label="GradCAM Method",
                    value="GradCAM",
                    interactive=True,
                    scale=2,
                )
                cam_method.description = "Here you can choose the GradCAM method."
                cam_method.description_place = "left"
                
                alpha = gr.Slider(
                    minimum=.1,
                    maximum=.9,
                    value=0.5,
                    interactive=True,
                    step=.1,
                    label="Alpha",
                    scale=1,
                )
                alpha.description = "Here you can choose the alpha value."
                alpha.description_place = "left"
                
                layer = gr.Radio(
                    ["layer1", "layer2", "layer3", "layer4", "all"],
                    label="Layer",
                    value="layer4",
                    interactive=True,
                    scale=2,
                )
                layer.description = "Here you can choose the layer to visualize."
                layer.description_place = "left"
                
            with gr.Column():
                output_cam = gr.Image(
                    type="pil",
                    label="GradCAM",
                    info="GradCAM visualization"
                    
                )
                
                gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1)
                gradcam_mode_button.click(fn=gradcam, inputs=[user_image, alpha, cam_method, layer], outputs=output_cam, queue=True)
            
    with gr.Tab("Example Images"):
        with gr.Column():
            placeholder = gr.Markdown("## Example Images")
            showed_images = list()
            loaded_images = load_random_images()
            amount_rows = max(1, (len(loaded_images) // IMAGES_PER_ROW))
            if len(loaded_images) == 0:
                print(f"Could not find any images in {IMAGE_PATH}")
                amount_rows = 0
            for i in range(amount_rows):
                with gr.Row():
                    for j in range(IMAGES_PER_ROW):
                        animal, image = loaded_images[i * IMAGES_PER_ROW + j]
                        showed_images.append(gr.Image(
                            value=image,
                            label=animal,
                            type="pil",
                            interactive=False,
                        ))
            
            
            
if __name__ == "__main__":
    demo.queue()
    demo.launch()