File size: 4,804 Bytes
79acef0
8ddb418
79acef0
8ddb418
 
8850972
79acef0
8ddb418
79acef0
 
8850972
79acef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b426c59
8850972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b426c59
79acef0
 
 
 
8850972
 
 
79acef0
8850972
79acef0
8850972
 
 
 
 
 
 
 
 
8ddb418
79acef0
73de835
 
79acef0
 
8850972
8ddb418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c72cc4
8ddb418
 
2c72cc4
8ddb418
 
 
 
c426221
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import os

VIDEOS_PER_ROW = 3
VIDEO_EXAMPLES_PATH = "src/example_videos"
def build_video_to_camvideo(CAM_METHODS, CV2_COLORMAPS, LAYERS, ALL_CLASSES, gradcam_video):
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Video to GradCAM-Video")
            gr.Markdown("Here you can upload a video and visualize the GradCAM.")
            gr.Markdown("Please note that this can take a while. Also currently only a maximum of 60 frames can be processed. The video will be cut to 60 frames if it is longer. Furthermore, the video can only consist of a maximum of 1000.")
            gr.Markdown("The more frames and fps the video has, the longer it takes to process and the result will be more choppy.")
            video_cam_method = gr.Radio(
                    ["GradCAM", "GradCAM++"],
                    label="GradCAM Method",
                    value="GradCAM",
                    interactive=True,
                    scale=2,
                )
                
            video_alpha = gr.Slider(
                    minimum=.1,
                    maximum=.9,
                    value=0.5,
                    interactive=True,
                    step=.1,
                    label="Alpha",
                    scale=1,
                )
                
            video_layer = gr.Radio(
                        [f"layer{i}" for i in range(1, 5)],
                        label="Layer",
                        value="layer4",
                        interactive=True,
                        scale=2,
                    )
            
            video_animal_to_explain = gr.Dropdown(
                choices=["Predicted Class"] + ALL_CLASSES,
                label="Animal",
                value="Predicted Class",
                interactive=True,
                scale=2,
            )
                
            with gr.Row():
                colormap = gr.Dropdown(
                    choices=list(CV2_COLORMAPS.keys()),
                    label="Colormap",
                    value="Inferno",
                    interactive=True,
                    scale=2,
                )
                
                bw_highlight = gr.Checkbox(
                    label="BW Highlight",
                    value=False,
                    interactive=True,
                    scale=1,
                )

            with gr.Row():
                use_eigen_smooth = gr.Checkbox(
                    label="Eigen Smooth",
                    value=False,
                    interactive=True,
                    scale=1,
                )
                
        with gr.Column(scale=1):
            with gr.Column():
                video_in = gr.Video(autoplay=False, include_audio=False)
                video_out = gr.Video(autoplay=False, include_audio=False)
                
            gif_cam_mode_button = gr.Button(value="Show GradCAM-Video", label="GradCAM", scale=1)
            gif_cam_mode_button.click(fn=gradcam_video, inputs=[video_in, colormap, use_eigen_smooth, bw_highlight, video_alpha, video_cam_method, video_layer, video_animal_to_explain], outputs=[video_out], queue=True)
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Examples", elem_id="video-examples-header")
            gr.Markdown("Here you can choose an example video to visualize the GradCAM. Just click play and the video will be loaded as input above. Then you can click the button above to visualize the GradCAM.")
            
            videos = os.listdir(VIDEO_EXAMPLES_PATH)
            videos = [os.path.join(VIDEO_EXAMPLES_PATH, video) for video in videos]
            videos = [video for video in videos if video.endswith(".mp4")]
            rows = (len(videos) // VIDEOS_PER_ROW) + 1
            loaded_videos = []
            for i in range(rows):
                with gr.Row(elem_classes=["row-example-videos"], equal_height=False):
                    for j in range(VIDEOS_PER_ROW):
                        if i * VIDEOS_PER_ROW + j >= len(videos): break
                        video = videos[i * VIDEOS_PER_ROW + j]
                        loaded_videos.append(
                            gr.Video(
                                value=video,
                                interactive=False,
                                label=f"video {i * VIDEOS_PER_ROW + j + 1}",
                                include_audio=False,
                                autoplay=False,
                                elem_classes=["selectable_videos"],
                            )
                        )
            for video in loaded_videos:
                video.play(fn=lambda x: x, inputs=[video], outputs=[video_in], scroll_to_output=True, queue=True, show_progress='full', max_batch_size=1)