Spaces:
Sleeping
Sleeping
File size: 14,730 Bytes
541501b 1eaf2e8 541501b 1eaf2e8 541501b 1eaf2e8 541501b 1eaf2e8 79acef0 541501b 37a68bf 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b 79acef0 541501b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import copy
import os
import sys
sys.path.append('src')
from collections import defaultdict
from functools import lru_cache
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from deep_translator import GoogleTranslator
from Nets import CustomResNet18
from PIL import Image
from torchcam.methods import GradCAM, GradCAMpp, SmoothGradCAMpp, XGradCAM
from torchcam.utils import overlay_mask
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
from util import transform
from gradio_blocks import build_video_to_camvideo
import cv2
import ffmpeg
IMAGE_PATH = os.path.join(os.getcwd(), 'src/examples')
IMAGES_PER_ROW = 7
MAXIMAL_FRAMES = 1000
BATCHES_TO_PROCESS = 10
OUTPUT_FPS = 15
MAX_OUT_FRAMES = 60
CAM_METHODS = {
"GradCAM": GradCAM,
"GradCAM++": GradCAMpp,
"XGradCAM": XGradCAM,
"SmoothGradCAM++": SmoothGradCAMpp,
}
model = CustomResNet18(90).eval()
model.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu')))
cam_model = copy.deepcopy(model)
data_df = pd.read_csv('src/cache/val_df.csv')
C_NUM_TO_NAME = data_df[['encoded_target', 'target']].drop_duplicates().sort_values('encoded_target').set_index('encoded_target')['target'].to_dict()
C_NAME_TO_NUM = {v: k for k, v in C_NUM_TO_NAME.items()}
ALL_CLASSES = sorted(list(C_NUM_TO_NAME.values()), key=lambda x: x.lower())
def get_class_name(idx):
return C_NUM_TO_NAME[idx]
def get_class_idx(name):
return C_NAME_TO_NUM[name]
@lru_cache(maxsize=100)
def get_translated(to_translate):
return "ssss"
# return GoogleTranslator(source="en", target="de").translate(to_translate)
# for idx in range(90): get_translated(get_class_name(idx))
def infer_image(image, image_sketch):
image = image if image is not None else image_sketch
image = transform(image)
image = image.unsqueeze(0)
with torch.no_grad():
output = model(image)
distribution = torch.nn.functional.softmax(output, dim=1)
ret = defaultdict(float)
for idx, prob in enumerate(distribution[0]):
animal = f'{get_class_name(idx)} ({get_translated(get_class_name(idx))})'
ret[animal] = prob.item()
return ret
def gradcam(image, image_sketch=None, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class"):
image = image if image is not None else image_sketch
if layer == 'layer1': layers = [model.resnet.layer1]
elif layer == 'layer2': layers = [model.resnet.layer2]
elif layer == 'layer3': layers = [model.resnet.layer3]
elif layer == 'layer4': layers = [model.resnet.layer4]
else: layers = [model.resnet.layer1, model.resnet.layer2, model.resnet.layer3, model.resnet.layer4]
model.eval()
img_tensor = transform(image).unsqueeze(0)
cam = CAM_METHODS[cam_method](model, target_layer=layers)
output = model(img_tensor)
class_to_explain = output.squeeze(0).argmax().item() if specific_class == "Predicted Class" else get_class_idx(specific_class)
activation_map = cam(class_to_explain, output)
result = overlay_mask(image, to_pil_image(activation_map[0].squeeze(0), mode='F'), alpha=alpha)
cam.remove_hooks()
# # height maximal 300px
# if result.size[1] > 300:
# ratio = 300 / result.size[1]
# result = result.resize((int(result.size[0] * ratio), 300))
return result
def gradcam_video(video, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class"):
global OUTPUT_FPS, MAXIMAL_FRAMES, BATCHES_TO_PROCESS, MAX_OUT_FRAMES
video = cv2.VideoCapture(video)
fps = int(video.get(cv2.CAP_PROP_FPS))
if OUTPUT_FPS == -1: OUTPUT_FPS = fps
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
if width > 3000 or height > 3000:
raise gr.Error("The video is too big. The maximal size is 3000x3000.")
print(f'FPS: {fps}, Width: {width}, Height: {height}')
frames = list()
success, image = video.read()
while success:
frames.append(image)
success, image = video.read()
print(f'Frames: {len(frames)}')
if len(frames) == 0:
raise gr.Error("The video is empty.")
if len(frames) >= MAXIMAL_FRAMES:
raise gr.Error(f"The video is too long. The maximal length is {MAXIMAL_FRAMES} frames.")
if len(frames) > MAX_OUT_FRAMES:
frames = frames[::len(frames) // MAX_OUT_FRAMES]
print(f'Frames to process: {len(frames)}')
processed = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
# generate lists in lists for the images for batch processing. 10 images per inner list..
batched = [processed[i:i + BATCHES_TO_PROCESS] for i in range(0, len(processed), BATCHES_TO_PROCESS)]
model.eval()
if layer == 'layer1': layers = [model.resnet.layer1]
elif layer == 'layer2': layers = [model.resnet.layer2]
elif layer == 'layer3': layers = [model.resnet.layer3]
elif layer == 'layer4': layers = [model.resnet.layer4]
else: layers = [model.resnet.layer1, model.resnet.layer2, model.resnet.layer3, model.resnet.layer4]
cam = CAM_METHODS[cam_method](model, target_layer=layers)
results = list()
for i, batch in enumerate(tqdm(batched)):
images_tensor = torch.stack([transform(image) for image in batch])
outputs = model(images_tensor)
out_classes = [output.argmax().item() for output in outputs]
classes_to_explain = out_classes if specific_class == "Predicted Class" else [get_class_idx(specific_class)] * len(out_classes)
activation_maps = cam(classes_to_explain, outputs)
for j, activation_map in enumerate(activation_maps[0]):
result = overlay_mask(batch[j], to_pil_image(activation_map, mode='F'), alpha=alpha)
results.append(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR))
cam.remove_hooks()
# save video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
size = (results[0].shape[1], results[0].shape[0])
video = cv2.VideoWriter('src/results/gradcam_video.mp4', fourcc, OUTPUT_FPS, size)
for frame in results:
video.write(frame)
video.release()
return 'src/results/gradcam_video.mp4'
def load_examples():
folder_name_to_header = {
"AI_Generated": "AI Generated Images",
"true_predicted": "True Predicted Images (Validation Set)",
"false_predicted": "False Predicted Images (Validation Set)",
"others": "Other interesting images from the internet"
}
images_description = {
"AI_Generated": "These images are generated by Dalle3 and Stable Diffusion. All of them are not real images and because of that it is interesting to see how the model predicts them.",
"true_predicted": "These images are from the validation set and the model predicted them correctly.",
"false_predicted": "These images are from the validation set and the model predicted them incorrectly. Maybe you can see why the model predicted them incorrectly using the GradCAM visualization. :)",
"others": "These images are from the internet and are not part of the validation set. They are interesting because most of them show different animals."
}
loaded_images = defaultdict(list)
for image_type in ["AI_Generated", "true_predicted", "false_predicted", "others"]:
# for image_type in os.listdir(IMAGE_PATH):
full_path = os.path.join(IMAGE_PATH, image_type).replace('\\', '/').replace('//', '/')
gr.Markdown(f'## {folder_name_to_header[image_type]}')
gr.Markdown(images_description[image_type])
images_to_load = os.listdir(full_path)
rows = (len(images_to_load) // IMAGES_PER_ROW) + 1
for i in range(rows):
with gr.Row(elem_classes=["row-example-images"], equal_height=False):
for j in range(IMAGES_PER_ROW):
if i * IMAGES_PER_ROW + j >= len(images_to_load): break
image = images_to_load[i * IMAGES_PER_ROW + j]
loaded_images[image_type].append(
gr.Image(
value=os.path.join(full_path, image),
label=f"image ({get_translated(image.split('.')[0])})",
type="pil",
interactive=False,
elem_classes=["selectable_images"],
)
)
return loaded_images
css = """
#logo {text-align: right;}
p {text-align: justify; text-justify: inter-word; font-size: 1.1em; line-height: 1.2em;}
.svelte-1btp92j.selectable {cursor: pointer !important; }
"""
with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
# -------------------------------------------
# HEADER WITH LOGO
# -------------------------------------------
with gr.Row():
with open('src/header.md', 'r', encoding='utf-8') as f:
markdown_string = f.read()
with gr.Column(scale=10):
header = gr.Markdown(markdown_string)
with gr.Column(scale=1):
pil_logo = Image.open('animals.png')
logo = gr.Image(value=pil_logo, scale=2, interactive=False, show_download_button=False, show_label=False, container=False, elem_id="logo")
# -------------------------------------------
# INPUT IMAGE
# -------------------------------------------
with gr.Row():
with gr.Tab("Upload Image"):
with gr.Row(variant="panel", equal_height=True):
user_image = gr.Image(
type="pil",
label="Upload Your Own Image",
info="You can also upload your own image for prediction.",
)
with gr.Tab("Draw Image"):
with gr.Row(variant="panel", equal_height=True):
user_image_sketched = gr.Image(
type="pil",
source="canvas",
tool="color-sketch",
label="Draw Your Own Image",
info="You can also draw your own image for prediction.",
)
# -------------------------------------------
# TOOLS
# -------------------------------------------
with gr.Row():
# -------------------------------------------
# PREDICT
# -------------------------------------------
with gr.Tab("Predict"):
with gr.Column():
output = gr.Label(
num_top_classes=5,
label="Output",
info="Top three predicted classes and their confidences.",
scale=5,
)
predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=1)
predict_mode_button.click(fn=infer_image, inputs=[user_image, user_image_sketched], outputs=output, queue=True)
# -------------------------------------------
# EXPLAIN
# -------------------------------------------
with gr.Tab("Explain"):
with gr.Row():
with gr.Column():
cam_method = gr.Radio(
list(CAM_METHODS.keys()),
label="GradCAM Method",
value="GradCAM",
interactive=True,
scale=2,
)
cam_method.description = "Here you can choose the GradCAM method."
cam_method.description_place = "left"
alpha = gr.Slider(
minimum=.1,
maximum=.9,
value=0.5,
interactive=True,
step=.1,
label="Alpha",
scale=1,
)
alpha.description = "Here you can choose the alpha value."
alpha.description_place = "left"
layer = gr.Radio(
["layer1", "layer2", "layer3", "layer4", "all"],
label="Layer",
value="layer4",
interactive=True,
scale=2,
)
layer.description = "Here you can choose the layer to visualize."
layer.description_place = "left"
animal_to_explain = gr.Dropdown(
choices=["Predicted Class"] + ALL_CLASSES,
label="Animal",
value="Predicted Class",
interactive=True,
scale=2,
)
animal_to_explain.description = "Here you can choose the animal to explain. If you choose 'Predicted Class' the method will explain the predicted class."
animal_to_explain.description_place = "center"
with gr.Column():
output_cam = gr.Image(
type="pil",
label="GradCAM",
info="GradCAM visualization"
)
gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1)
gradcam_mode_button.click(fn=gradcam, inputs=[user_image, user_image_sketched, alpha, cam_method, layer, animal_to_explain], outputs=output_cam, queue=True)
# -------------------------------------------
# GIF CAM
# -------------------------------------------
with gr.Tab("Gif Cam"):
build_video_to_camvideo(CAM_METHODS, ALL_CLASSES, gradcam_video)
# -------------------------------------------
# EXAMPLES
# -------------------------------------------
with gr.Tab("Example Images"):
placeholder = gr.Markdown("## Example Images")
loaded_images = load_examples()
for k in loaded_images.keys():
for image in loaded_images[k]:
image.select(fn=lambda x: x, inputs=[image], outputs=[user_image])
if __name__ == "__main__":
demo.queue()
demo.launch() |