File size: 22,546 Bytes
b426c59
541501b
1eaf2e8
 
8850972
1eaf2e8
8850972
1eaf2e8
 
8850972
 
1eaf2e8
8850972
1eaf2e8
 
 
541501b
8850972
1eaf2e8
b426c59
8850972
 
 
 
 
1eaf2e8
b426c59
 
 
79acef0
8f6271b
 
541501b
37a68bf
8850972
79acef0
b426c59
 
73de835
b426c59
8850972
b426c59
8850972
541501b
b426c59
 
 
 
 
 
 
 
 
 
 
 
541501b
 
8850972
541501b
8850972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541501b
 
8850972
541501b
 
79acef0
 
 
541501b
 
79acef0
 
 
 
541501b
b426c59
 
 
 
 
 
 
 
 
 
 
 
541501b
b426c59
 
8850972
541501b
 
 
8850972
541501b
 
 
b426c59
 
 
541501b
 
 
b426c59
8850972
 
541501b
8850972
 
 
541501b
8850972
 
 
 
 
 
b426c59
 
8850972
 
 
 
 
 
 
541501b
8850972
 
b426c59
 
8850972
 
 
 
 
 
 
 
 
 
 
b426c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79acef0
8850972
79acef0
b426c59
8850972
 
 
 
79acef0
 
 
 
 
b426c59
 
79acef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8850972
79acef0
541501b
8850972
 
79acef0
8850972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541501b
79acef0
8f6271b
79acef0
 
 
 
 
 
b426c59
 
79acef0
 
541501b
79acef0
 
b426c59
 
79acef0
 
 
 
 
b426c59
79acef0
 
 
 
 
 
 
 
 
 
 
b426c59
8850972
 
 
 
79acef0
 
8850972
 
79acef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b426c59
 
 
 
 
 
 
 
 
79acef0
 
 
 
8850972
 
 
 
 
 
79acef0
 
 
 
 
 
 
 
 
541501b
79acef0
 
 
 
 
541501b
b426c59
 
 
79acef0
 
 
 
73de835
79acef0
 
8850972
79acef0
 
 
8850972
79acef0
 
 
 
 
8850972
 
 
 
79acef0
 
 
 
 
 
 
 
8850972
79acef0
 
8850972
 
 
 
 
79acef0
8850972
79acef0
 
 
 
8850972
79acef0
b426c59
79acef0
b426c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8850972
 
 
 
 
 
 
 
 
b426c59
8850972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79acef0
8850972
 
 
 
 
 
 
 
 
79acef0
b426c59
79acef0
 
 
8850972
b426c59
 
79acef0
b426c59
 
79acef0
 
8ddb418
79acef0
73de835
8850972
79acef0
 
 
 
 
541501b
79acef0
 
 
b426c59
541501b
 
 
b426c59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from concurrent.futures import ThreadPoolExecutor
import copy
import os
import sys

sys.path.append('src')
import shutil
from collections import defaultdict
from functools import lru_cache

import cv2
import gradio as gr
import mediapy
import numpy as np
import pandas as pd
import torch
from deep_translator import GoogleTranslator
from gradio_blocks import build_video_to_camvideo
from Nets import CustomResNet18
from PIL import Image, ImageDraw, ImageFont

from pytorch_grad_cam import GradCAM, HiResCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image

from tqdm import tqdm
from util import transform

font = ImageFont.truetype("src/Roboto-Regular.ttf", 16)

ffmpeg_path = shutil.which('ffmpeg')
mediapy.set_ffmpeg(ffmpeg_path)

IMAGE_PATH = os.path.join(os.getcwd(), 'src/examples')
IMAGES_PER_ROW = 5

MAXIMAL_FRAMES = 700
BATCHES_TO_PROCESS = 20
OUTPUT_FPS = 10
MAX_OUT_FRAMES = 70

MODEL = CustomResNet18(111).eval()
MODEL.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu')))

LANGUAGES_TO_SELECT = {
    "None": None,
    "German": "de",
    "French": "fr",
    "Spanish": "es",
    "Italian": "it",
    "Finnish": "fi",
    "Ukrainian": "uk",
    "Japanese": "ja",
    "Hebrew": "iw"
}

CAM_METHODS = {
    "GradCAM": GradCAM,
    "GradCAM++": GradCAMPlusPlus,
    "XGradCAM": XGradCAM,
    "HiResCAM": HiResCAM,
    "EigenCAM": EigenCAM
}

LAYERS = {
    'layer1': MODEL.resnet.layer1,
    'layer2': MODEL.resnet.layer2,
    'layer3': MODEL.resnet.layer3,
    'layer4': MODEL.resnet.layer4,
    'all': [MODEL.resnet.layer1, MODEL.resnet.layer2, MODEL.resnet.layer3, MODEL.resnet.layer4],
    'layer3+4': [MODEL.resnet.layer3, MODEL.resnet.layer4]
}

CV2_COLORMAPS = {
    "Autumn": cv2.COLORMAP_AUTUMN,
    "Bone": cv2.COLORMAP_BONE,
    "Jet": cv2.COLORMAP_JET,
    "Winter": cv2.COLORMAP_WINTER,
    "Rainbow": cv2.COLORMAP_RAINBOW,
    "Ocean": cv2.COLORMAP_OCEAN,
    "Summer": cv2.COLORMAP_SUMMER,
    "Pink": cv2.COLORMAP_PINK,
    "Hot": cv2.COLORMAP_HOT,
    "Magma": cv2.COLORMAP_MAGMA,
    "Inferno": cv2.COLORMAP_INFERNO,
    "Plasma": cv2.COLORMAP_PLASMA,
    "Twilight": cv2.COLORMAP_TWILIGHT,
}

# cam_model = copy.deepcopy(model)
data_df = pd.read_csv('src/cache/val_df.csv')

C_NUM_TO_NAME = data_df[['encoded_target', 'target']].drop_duplicates().sort_values('encoded_target').set_index('encoded_target')['target'].to_dict()
C_NAME_TO_NUM = {v: k for k, v in C_NUM_TO_NAME.items()}
ALL_CLASSES = sorted(list(C_NUM_TO_NAME.values()), key=lambda x: x.lower())

def get_class_name(idx):
    return C_NUM_TO_NAME[idx]

def get_class_idx(name):
    return C_NAME_TO_NUM[name]

@lru_cache(maxsize=len(LANGUAGES_TO_SELECT.keys())*111)
def get_translated(to_translate, target_language="German"):
    target_language = LANGUAGES_TO_SELECT[target_language] if target_language in LANGUAGES_TO_SELECT else target_language
    if target_language == "en": return to_translate
    if target_language not in LANGUAGES_TO_SELECT.values(): raise gr.Error(f'Language {target_language} not found.')
    return GoogleTranslator(source="en", target=target_language).translate(to_translate)
# for idx in range(111): get_translated(get_class_name(idx))
with ThreadPoolExecutor(max_workers=30) as executor:
    # give the executor the list of images and args (in this case, the target language)
    # and let the executor map the function to the list of images
    for language in tqdm(LANGUAGES_TO_SELECT.keys(), desc='Preloading translations'):
        executor.map(get_translated, ALL_CLASSES, [language] * len(ALL_CLASSES))

def infer_image(image, target_language):
    if image is None: raise gr.Error("Please upload an image.")
    image.save('src/results/infer_image.png')
    image = transform(image)
    image = image.unsqueeze(0)
    with torch.no_grad():
        output = MODEL(image)
    distribution = torch.nn.functional.softmax(output, dim=1)
    ret = defaultdict(float)
    for idx, prob in enumerate(distribution[0]):
        animal = f'{get_class_name(idx)}'
        if target_language is not None and target_language != "None":
            animal += f' ({get_translated(get_class_name(idx), target_language)})'
        ret[animal] = prob.item()
    return ret

def gradcam(image, colormap="Jet", use_eigen_smooth=False, use_aug_smooth=False, BWHighlight=False, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class", label_image=True, target_lang="German"):
    if image is None:
        raise gr.Error("Please upload an image.")
    
    if isinstance(image, dict):
        # Its the image and a mask as pillow both -> Combine them to one image
        image = Image.blend(image["image"], image["mask"], alpha=0.5)
    
    if colormap not in CV2_COLORMAPS.keys():
        raise gr.Error(f"Colormap {colormap} not found in {list(CV2_COLORMAPS.keys())}.")
    else: 
        colormap = CV2_COLORMAPS[colormap]
        
    image_width, image_height = image.size
    if image_width > 6000 or image_height > 6000:
        raise gr.Error("The image is too big. The maximal size is 6000x6000.")
    
    
    MODEL.eval()
    layers = LAYERS[layer]
    
    image_tensor = transform(image).unsqueeze(0)
    targets = [ClassifierOutputTarget(get_class_idx(specific_class))] if specific_class != "Predicted Class" else None

    with CAM_METHODS[cam_method](model=MODEL, target_layers=layers) as cam:
        grayscale_cam = cam(input_tensor=image_tensor, targets=targets, aug_smooth=use_aug_smooth, eigen_smooth=use_eigen_smooth)
        if label_image:
            predicted_animal = get_class_name(np.argmax(cam.outputs.cpu().data.numpy(), axis=-1)[0])
        
    grayscale_cam = grayscale_cam[0, :]
    grayscale_cam = cv2.resize(grayscale_cam, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
    image = np.float32(image)
    visualization = None
    if BWHighlight:
        image = image * grayscale_cam[..., np.newaxis]
        visualization = image.astype(np.uint8)
    else:
        image = image / 255
        visualization = show_cam_on_image(image, grayscale_cam, use_rgb=True, image_weight=alpha, colormap=colormap)

    if label_image:
        # add alpha channel to visualization
        visualization = np.concatenate([visualization, np.ones((image_height, image_width, 1), dtype=np.uint8) * 255], axis=-1)
        plt_image = Image.fromarray(visualization, mode="RGBA")
        draw = ImageDraw.Draw(plt_image)
        draw.rectangle((5, 5, 150, 30), fill=(10, 10, 10, 100))
        animal = predicted_animal.capitalize()
        if target_lang is not None and target_lang != "None":
            animal += f' ({get_translated(animal, target_lang)})'
        draw.text((10, 7), animal, font=font, fill=(255, 125, 0, 255))
        visualization = np.array(plt_image)

    out_image = Image.fromarray(visualization)
    return out_image

def gradcam_video(video, colormap="Jet", use_eigen_smooth=False, BWHighlight=False, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class"):
    global OUTPUT_FPS, MAXIMAL_FRAMES, BATCHES_TO_PROCESS, MAX_OUT_FRAMES
    if video is None: raise gr.Error("Please upload a video.")
    if colormap not in CV2_COLORMAPS.keys():
        raise gr.Error(f"Colormap {colormap} not found in {list(CV2_COLORMAPS.keys())}.")
    else: 
        colormap = CV2_COLORMAPS[colormap]
    video = cv2.VideoCapture(video)
    fps = int(video.get(cv2.CAP_PROP_FPS))
    if OUTPUT_FPS == -1: OUTPUT_FPS = fps
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    if width > 2000 or height > 2000:
        raise gr.Error("The video is too big. The maximal size is 2000x2000.")
    print(f'FPS: {fps}, Width: {width}, Height: {height}')
    
    frames = list()
    success, image = video.read()
    while success:
        frames.append(image)
        success, image = video.read()
    print(f'Frames: {len(frames)}')
    if len(frames) == 0: 
        raise gr.Error("The video is empty.")
    if len(frames) >= MAXIMAL_FRAMES:
        raise gr.Error(f"The video is too long. The maximal length is {MAXIMAL_FRAMES} frames.")
    
    if len(frames) > MAX_OUT_FRAMES:
        frames = frames[::len(frames) // MAX_OUT_FRAMES]
    
    print(f'Frames to process: {len(frames)}')

    processed = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
    # generate lists in lists for the images for batch processing. BATCHES_TO_PROCESS images per inner list
    batched = [processed[i:i + BATCHES_TO_PROCESS] for i in range(0, len(processed), BATCHES_TO_PROCESS)]
    
    MODEL.eval()
    layers = LAYERS[layer]
    results = list()
    targets = [ClassifierOutputTarget(get_class_idx(specific_class))] if specific_class != "Predicted Class" else None
    with CAM_METHODS[cam_method](model=MODEL, target_layers=layers) as cam:
        for i, batch in enumerate(tqdm(batched)):
            images_tensor = torch.stack([transform(image) for image in batch])
            
            grayscale_cam = cam(input_tensor=images_tensor, targets=targets, aug_smooth=False, eigen_smooth=use_eigen_smooth)
            for i, image in enumerate(batch):
                _grayscale_cam = grayscale_cam[i, :]
                _grayscale_cam = cv2.resize(_grayscale_cam, (width, height), interpolation=cv2.INTER_LINEAR)
                image = np.float32(image)
                visualization = None
                if BWHighlight:
                    image = image * _grayscale_cam[..., np.newaxis]
                    visualization = image.astype(np.uint8)
                else:
                    image = image / 255
                    visualization = show_cam_on_image(image, _grayscale_cam, use_rgb=True, image_weight=alpha, colormap=colormap)
                results.append(visualization)
        
    # save video
    mediapy.write_video('src/results/gradcam_video.mp4', results, fps=OUTPUT_FPS)
    video.release()
    return 'src/results/gradcam_video.mp4'

def load_examples():
    folder_name_to_header = {
        "AI_Generated": "AI Generated Images",
        "true": "True Predicted Images (Validation Set)",
        "false": "False Predicted Images (Validation Set)",
        "others": "Other interesting images from the internet"
    }
    
    images_description = {
        "AI_Generated": "These images are generated by Dalle3 and Stable Diffusion. All of them are not real images and because of that it is interesting to see how the model predicts them.",
        "true": "These images are from the validation set and the model predicted them correctly.",
        "false": "These images are from the validation set and the model predicted them incorrectly. Maybe you can see why the model predicted them incorrectly using the GradCAM visualization. :)",
        "others": "These images are from the internet and are not part of the validation set. They are interesting because most of them show different animals."
    }
    
    loaded_images = defaultdict(list)
    
    for image_type in ["AI_Generated", "true", "false", "others"]:
    # for image_type in os.listdir(IMAGE_PATH):
        full_path = os.path.join(IMAGE_PATH, image_type).replace('\\', '/').replace('//', '/')
        gr.Markdown(f'## {folder_name_to_header[image_type]}')
        gr.Markdown(images_description[image_type])
        images_to_load = os.listdir(full_path)
        rows = (len(images_to_load) // IMAGES_PER_ROW) + 1
        for i in range(rows):
            with gr.Row(elem_classes=["row-example-images"], equal_height=False):
                for j in range(IMAGES_PER_ROW):
                    if i * IMAGES_PER_ROW + j >= len(images_to_load): break
                    image = images_to_load[i * IMAGES_PER_ROW + j]
                    name = f"{image.split('.')[0]}"
                    image = Image.open(os.path.join(full_path, image))
                    # scale so that the longest side is 600px
                    scale = 600 / max(image.size)
                    image = image.resize((int(image.size[0] * scale), int(image.size[1] * scale)))
                    loaded_images[image_type].append(
                        gr.Image(
                            value=image,
                            label=name,
                            type="pil",
                            interactive=False,
                            elem_classes=["selectable_images"],
                        )
                    )
    return loaded_images

css = """
#logo {text-align: right;}
p {text-align: justify; text-justify: inter-word; font-size: 1.1em; line-height: 1.2em;}
.svelte-1btp92j.selectable {cursor: pointer !important; }
"""

with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
    # -------------------------------------------
    #              HEADER WITH LOGO
    # -------------------------------------------
    with gr.Row():
        with open('src/header.md', 'r', encoding='utf-8') as f:
            markdown_string = f.read()
        with gr.Column(scale=10):
            header = gr.Markdown(markdown_string)
        with gr.Column(scale=1):
            pil_logo = Image.open('animals.png')
            logo = gr.Image(value=pil_logo, scale=2, interactive=False, show_download_button=False, show_label=False, container=False, elem_id="logo")
            
            animal_translation_target_language = gr.Dropdown(
                choices=LANGUAGES_TO_SELECT.keys(),
                label="Translation language for animals",
                value="German",
                interactive=True,
                scale=2,
            )

    # -------------------------------------------
    #                INPUT IMAGE
    # -------------------------------------------
    with gr.Row():
        with gr.Row(variant="panel", equal_height=True):
            user_image = gr.Image(
                type="pil",
                label="Upload Your Own Image",
                interactive=True,
            )
    
    # -------------------------------------------
    #                TOOLS
    # -------------------------------------------
    with gr.Row():
        # -------------------------------------------
        #                PREDICT
        # -------------------------------------------   
        with gr.Tab("Predict"):
            with gr.Column():
                output = gr.Label(
                    num_top_classes=5,
                    label="Output",
                    info="Top three predicted classes and their confidences.",
                    scale=5,
                )
                with gr.Row():
                    predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=6)
                    predict_mode_button.click(fn=infer_image, inputs=[user_image, animal_translation_target_language], outputs=output, queue=True)
        
        # -------------------------------------------
        #                EXPLAIN
        # -------------------------------------------
        with gr.Tab("Explain Image"):
            with gr.Row():
                with gr.Column():
                    _info = "There are different GradCAM methods. You can read more about them here: (https://github.com/jacobgil/pytorch-grad-cam#references)."
                    cam_method = gr.Radio(
                        list(CAM_METHODS.keys()),
                        label="GradCAM Method",
                        info=_info,
                        value="GradCAM",
                        interactive=True,
                        scale=2,
                    )
                    
                    _info = """
                        The alpha value is used to blend the original image with the GradCAM visualization. If you choose a value of 0.5 the original image and the GradCAM visualization will be blended equally.
                        If you choose a value of 0.1 the original image will be barely visible and if you choose a value of 0.9 the GradCAM visualization will be barely visible.
                        """
                    alpha = gr.Slider(
                        minimum=.1,
                        maximum=.9,
                        value=0.5,
                        interactive=True,
                        step=.1,
                        label="Alpha",
                        scale=1,
                        info=_info
                    )
                    
                    _info = """
                        The layer is used to choose the layer of the ResNet50 model. The GradCAM visualization will be based on this layer.
                        Best to choose is the last layer (layer4) because it is the layer with the most information before the final prediction. This makes the GradCAM visualization the most meaningful.
                        If all layers are chosen the GradCAM visualization will be averaged over all layers. 
                    """
                    layer = gr.Radio(
                        LAYERS.keys(),
                        label="Layer",
                        value="layer4",
                        interactive=True,
                        scale=2,
                        info=_info
                    )
                    with gr.Row():
                    
                        _info = """
                            Here you can choose the animal to "explain". If you choose "Predicted Class" the GradCAM visualization will be based on the predicted class.
                            If you choose a specific class the GradCAM visualization will be based on this class.
                            For example if you have an image with a dog and a cat, you can select either Cat or Dog and see if the model can focus on the correct animal.
                        """
                        animal_to_explain = gr.Dropdown(
                            choices=["Predicted Class"] + ALL_CLASSES,
                            label="Animal",
                            value="Predicted Class",
                            interactive=True,
                            scale=4,
                            info=_info
                        )
                        
                        show_predicted_class = gr.Checkbox(
                            label="Show Predicted Class",
                            value=True,
                            interactive=True,
                            scale=1,
                        )
                        
                    with gr.Row():
                        _info = """
                            Here you can choose the colormap. Instead of a colormap you can also choose "BW Highlight" to just keep the original image and highlight the important parts of the image.
                            If you select "BW Highlight" the colormap will be ignored.
                        """
                        colormap = gr.Dropdown(
                            choices=list(CV2_COLORMAPS.keys()),
                            label="Colormap",
                            value="Inferno",
                            interactive=True,
                            scale=2,
                            info=_info
                        )
                        
                        bw_highlight = gr.Checkbox(
                            label="BW Highlight",
                            value=False,
                            interactive=True,
                            scale=1,
                        )
                        bw_highlight.description = "Here you can choose if you want to highlight the important parts of the image in black and white."

                    with gr.Row():
                        _info = """
                            The Eigen Smooth is a method to smooth the GradCAM visualization. 
                        """
                        use_eigen_smooth = gr.Checkbox(
                            label="Eigen Smooth",
                            value=False,
                            interactive=True,
                            scale=1,
                            info=_info
                        )
                        _info = """
                            The Aug Smooth is also a method to smooth the GradCAM visualization. But this method needs a lot of performance and is therefore slow.
                        """
                    
                        use_aug_smooth = gr.Checkbox(
                            label="Aug Smooth",
                            value=False,
                            interactive=True,
                            scale=1,
                            info=_info
                        )
                
                        
                with gr.Column():
                    gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1)
                    output_cam = gr.Image(
                        type="pil",
                        label="GradCAM",
                        info="GradCAM visualization",
                        show_label=False,
                        scale=7,
                    )
                    _inputs = [user_image, colormap, use_eigen_smooth, use_aug_smooth, bw_highlight, alpha, cam_method, layer, animal_to_explain, show_predicted_class, animal_translation_target_language]
                    gradcam_mode_button.click(fn=gradcam, inputs=_inputs, outputs=output_cam, queue=True)
        
        # -------------------------------------------
        #                Video CAM
        # -------------------------------------------
        with gr.Tab("Explain Video"):
            build_video_to_camvideo(CAM_METHODS, CV2_COLORMAPS, LAYERS, ALL_CLASSES, gradcam_video)
        
        # -------------------------------------------
        #                EXAMPLES
        # -------------------------------------------
        with gr.Tab("Example Images"):
            placeholder = gr.Markdown("## Example Images")
            loaded_images = load_examples()
            for k in loaded_images.keys():
                for image in loaded_images[k]:
                    image.select(fn=lambda x: x, inputs=[image], outputs=[user_image], queue=True, scroll_to_output=True)
            
if __name__ == "__main__":
    demo.queue()
    print("Starting Gradio server...")
    demo.launch(show_tips=True)