Spaces:
Sleeping
Sleeping
File size: 4,804 Bytes
79acef0 8ddb418 79acef0 8ddb418 8850972 79acef0 8ddb418 79acef0 8850972 79acef0 b426c59 8850972 b426c59 79acef0 8850972 79acef0 8850972 79acef0 8850972 8ddb418 79acef0 73de835 79acef0 8850972 8ddb418 2c72cc4 8ddb418 2c72cc4 8ddb418 c426221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
import os
VIDEOS_PER_ROW = 3
VIDEO_EXAMPLES_PATH = "src/example_videos"
def build_video_to_camvideo(CAM_METHODS, CV2_COLORMAPS, LAYERS, ALL_CLASSES, gradcam_video):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Video to GradCAM-Video")
gr.Markdown("Here you can upload a video and visualize the GradCAM.")
gr.Markdown("Please note that this can take a while. Also currently only a maximum of 60 frames can be processed. The video will be cut to 60 frames if it is longer. Furthermore, the video can only consist of a maximum of 1000.")
gr.Markdown("The more frames and fps the video has, the longer it takes to process and the result will be more choppy.")
video_cam_method = gr.Radio(
["GradCAM", "GradCAM++"],
label="GradCAM Method",
value="GradCAM",
interactive=True,
scale=2,
)
video_alpha = gr.Slider(
minimum=.1,
maximum=.9,
value=0.5,
interactive=True,
step=.1,
label="Alpha",
scale=1,
)
video_layer = gr.Radio(
[f"layer{i}" for i in range(1, 5)],
label="Layer",
value="layer4",
interactive=True,
scale=2,
)
video_animal_to_explain = gr.Dropdown(
choices=["Predicted Class"] + ALL_CLASSES,
label="Animal",
value="Predicted Class",
interactive=True,
scale=2,
)
with gr.Row():
colormap = gr.Dropdown(
choices=list(CV2_COLORMAPS.keys()),
label="Colormap",
value="Inferno",
interactive=True,
scale=2,
)
bw_highlight = gr.Checkbox(
label="BW Highlight",
value=False,
interactive=True,
scale=1,
)
with gr.Row():
use_eigen_smooth = gr.Checkbox(
label="Eigen Smooth",
value=False,
interactive=True,
scale=1,
)
with gr.Column(scale=1):
with gr.Column():
video_in = gr.Video(autoplay=False, include_audio=False)
video_out = gr.Video(autoplay=False, include_audio=False)
gif_cam_mode_button = gr.Button(value="Show GradCAM-Video", label="GradCAM", scale=1)
gif_cam_mode_button.click(fn=gradcam_video, inputs=[video_in, colormap, use_eigen_smooth, bw_highlight, video_alpha, video_cam_method, video_layer, video_animal_to_explain], outputs=[video_out], queue=True)
with gr.Row():
with gr.Column():
gr.Markdown("## Examples", elem_id="video-examples-header")
gr.Markdown("Here you can choose an example video to visualize the GradCAM. Just click play and the video will be loaded as input above. Then you can click the button above to visualize the GradCAM.")
videos = os.listdir(VIDEO_EXAMPLES_PATH)
videos = [os.path.join(VIDEO_EXAMPLES_PATH, video) for video in videos]
videos = [video for video in videos if video.endswith(".mp4")]
rows = (len(videos) // VIDEOS_PER_ROW) + 1
loaded_videos = []
for i in range(rows):
with gr.Row(elem_classes=["row-example-videos"], equal_height=False):
for j in range(VIDEOS_PER_ROW):
if i * VIDEOS_PER_ROW + j >= len(videos): break
video = videos[i * VIDEOS_PER_ROW + j]
loaded_videos.append(
gr.Video(
value=video,
interactive=False,
label=f"video {i * VIDEOS_PER_ROW + j + 1}",
include_audio=False,
autoplay=False,
elem_classes=["selectable_videos"],
)
)
for video in loaded_videos:
video.play(fn=lambda x: x, inputs=[video], outputs=[video_in], scroll_to_output=True, queue=True, show_progress='full', max_batch_size=1) |