Spaces:
Sleeping
Sleeping
File size: 2,324 Bytes
541501b 79acef0 541501b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
class SimpleCNN(nn.Module):
def __init__(self, k_size=3, pool_size=2, num_classes=1):
super(SimpleCNN, self).__init__()
self.relu = nn.ReLU()
# First Convolutional Layer
self.conv1 = nn.Conv2d(in_channels=3, out_channels=8, kernel_size=k_size, padding=1)
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=k_size, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=pool_size)
# Second Convolutional Layer
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=k_size, stride=1, padding=1)
self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=k_size, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=pool_size)
self.conv5 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=k_size, stride=1, padding=1)
self.conv6 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=pool_size)
self.conv7 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
self.conv8 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=pool_size)
# Fully Connected Layers
self.fc = nn.Linear(64*14*14, num_classes) # Adjust the input features based on your input image size
def forward(self, x):
x = self.pool1(self.relu(self.conv2(self.relu(self.conv1(x)))))
x = self.pool2(self.relu(self.conv4(self.relu(self.conv3(x)))))
x = self.pool3(self.relu(self.conv6(self.relu(self.conv5(x)))))
x = self.pool4(self.relu(self.conv8(self.relu(self.conv7(x)))))
# print(x.shape)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class CustomResNet18(nn.Module):
def __init__(self, num_classes=11):
super(CustomResNet18, self).__init__()
self.resnet = models.resnet50(pretrained=True)
num_features = self.resnet.fc.in_features
self.resnet.fc = nn.Linear(num_features, num_classes)
def forward(self, x):
return self.resnet(x)
|