File size: 2,324 Bytes
541501b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79acef0
541501b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models

class SimpleCNN(nn.Module):
    def __init__(self, k_size=3, pool_size=2, num_classes=1):
        super(SimpleCNN, self).__init__()
        self.relu = nn.ReLU()
        # First Convolutional Layer
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=8, kernel_size=k_size, padding=1)
        self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=k_size, stride=1, padding=1)
        self.pool1 = nn.MaxPool2d(kernel_size=pool_size)

        # Second Convolutional Layer
        self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=k_size, stride=1, padding=1)
        self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=k_size, stride=1, padding=1)
        self.pool2 = nn.MaxPool2d(kernel_size=pool_size)
        
        self.conv5 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=k_size, stride=1, padding=1)
        self.conv6 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
        self.pool3 = nn.MaxPool2d(kernel_size=pool_size)
        
        self.conv7 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
        self.conv8 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=k_size, stride=1, padding=1)
        self.pool4 = nn.MaxPool2d(kernel_size=pool_size)
        
        # Fully Connected Layers
        self.fc = nn.Linear(64*14*14, num_classes)  # Adjust the input features based on your input image size

    def forward(self, x):
        x = self.pool1(self.relu(self.conv2(self.relu(self.conv1(x)))))
        x = self.pool2(self.relu(self.conv4(self.relu(self.conv3(x)))))
        x = self.pool3(self.relu(self.conv6(self.relu(self.conv5(x)))))
        x = self.pool4(self.relu(self.conv8(self.relu(self.conv7(x)))))
        # print(x.shape)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x
    
class CustomResNet18(nn.Module):
    def __init__(self, num_classes=11):
        super(CustomResNet18, self).__init__()
        self.resnet = models.resnet50(pretrained=True)
        num_features = self.resnet.fc.in_features
        self.resnet.fc = nn.Linear(num_features, num_classes)

    def forward(self, x):
        return self.resnet(x)