Spaces:
Sleeping
Sleeping
import torchvision.transforms as transforms | |
from torch.utils.data import DataLoader, Dataset | |
from sklearn.preprocessing import LabelEncoder | |
from tqdm import tqdm | |
from PIL import Image | |
import torch | |
import imagehash | |
ImageCache = None | |
class AnimalDataset(Dataset): | |
def __init__(self, df, transform=None): | |
self.paths = df["path"].values | |
self.targets = df["target"].values | |
self.encoded_target = df['encoded_target'].values | |
self.transform = transform | |
self.images = [] | |
for path in tqdm(self.paths): | |
self.images.append(Image.open(path).convert("RGB").resize((224, 224))) | |
def __len__(self): | |
return len(self.paths) | |
def __getitem__(self, idx): | |
img = self.images[idx] | |
if self.transform: | |
img = self.transform(img) | |
target = self.targets[idx] | |
encoded_target = torch.tensor(self.encoded_target[idx]).type(torch.LongTensor) | |
return img, encoded_target, target | |
train_transform = transforms.Compose([ | |
transforms.Resize((224,224)), | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomRotation(10), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# Define the transformation pipeline | |
transform = transforms.Compose([ | |
transforms.Resize((224,224)), | |
transforms.ToTensor(), # Convert the images to PyTorch tensors | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
class CustomImageCache: | |
def __init__(self, cache_size=50, debug=False): | |
self.cache = dict() | |
self.cache_size = 50 | |
self.debug = debug | |
self.cache_hits = 0 | |
self.cache_misses = 0 | |
def __getitem__(self, image): | |
if isinstance(image, dict): | |
# Its the image and a mask as pillow both -> Combine them to one image | |
image = Image.blend(image["image"], image["mask"], alpha=0.5) | |
key = imagehash.average_hash(image) | |
if key in self.cache: | |
if self.debug: print("Cache hit!") | |
self.cache_hits += 1 | |
return self.cache[key] | |
else: | |
if self.debug: print("Cache miss!") | |
self.cache_misses += 1 | |
if len(self.cache.keys()) >= self.cache_size: | |
if self.debug: print("Cache full, popping item!") | |
self.cache.popitem() | |
self.cache[key] = image | |
return self.cache[key] | |
def __len__(self): | |
return len(self.cache.keys()) | |
def print_info(self): | |
print(f"Cache size: {len(self)}") | |
print(f"Cache hits: {self.cache_hits}") | |
print(f"Cache misses: {self.cache_misses}") | |
def imageCacheWrapper(fn): | |
def wrapper(image): | |
return fn(ImageCache[image]) | |
return wrapper |