GabrielML commited on
Commit
a84cfdc
·
1 Parent(s): b426c59

Add custom grad cam

Browse files
Files changed (33) hide show
  1. app.py +2 -1
  2. src/custom_code/custom_grad_cam/__init__.py +20 -0
  3. src/custom_code/custom_grad_cam/ablation_cam.py +148 -0
  4. src/custom_code/custom_grad_cam/ablation_cam_multilayer.py +136 -0
  5. src/custom_code/custom_grad_cam/ablation_layer.py +155 -0
  6. src/custom_code/custom_grad_cam/activations_and_gradients.py +46 -0
  7. src/custom_code/custom_grad_cam/base_cam.py +205 -0
  8. src/custom_code/custom_grad_cam/eigen_cam.py +23 -0
  9. src/custom_code/custom_grad_cam/eigen_grad_cam.py +21 -0
  10. src/custom_code/custom_grad_cam/feature_factorization/__init__.py +0 -0
  11. src/custom_code/custom_grad_cam/feature_factorization/deep_feature_factorization.py +131 -0
  12. src/custom_code/custom_grad_cam/feature_factorization/utils.py +19 -0
  13. src/custom_code/custom_grad_cam/fullgrad_cam.py +95 -0
  14. src/custom_code/custom_grad_cam/grad_cam.py +22 -0
  15. src/custom_code/custom_grad_cam/grad_cam_elementwise.py +30 -0
  16. src/custom_code/custom_grad_cam/grad_cam_plusplus.py +32 -0
  17. src/custom_code/custom_grad_cam/guided_backprop.py +100 -0
  18. src/custom_code/custom_grad_cam/hirescam.py +32 -0
  19. src/custom_code/custom_grad_cam/layer_cam.py +36 -0
  20. src/custom_code/custom_grad_cam/metrics/__init__.py +0 -0
  21. src/custom_code/custom_grad_cam/metrics/cam_mult_image.py +37 -0
  22. src/custom_code/custom_grad_cam/metrics/perturbation_confidence.py +109 -0
  23. src/custom_code/custom_grad_cam/metrics/road.py +181 -0
  24. src/custom_code/custom_grad_cam/random_cam.py +22 -0
  25. src/custom_code/custom_grad_cam/score_cam.py +60 -0
  26. src/custom_code/custom_grad_cam/sobel_cam.py +11 -0
  27. src/custom_code/custom_grad_cam/utils/__init__.py +4 -0
  28. src/custom_code/custom_grad_cam/utils/find_layers.py +30 -0
  29. src/custom_code/custom_grad_cam/utils/image.py +183 -0
  30. src/custom_code/custom_grad_cam/utils/model_targets.py +103 -0
  31. src/custom_code/custom_grad_cam/utils/reshape_transforms.py +34 -0
  32. src/custom_code/custom_grad_cam/utils/svd_on_activations.py +19 -0
  33. src/custom_code/custom_grad_cam/xgrad_cam.py +31 -0
app.py CHANGED
@@ -19,7 +19,8 @@ from gradio_blocks import build_video_to_camvideo
19
  from Nets import CustomResNet18
20
  from PIL import Image, ImageDraw, ImageFont
21
 
22
- from pytorch_grad_cam import GradCAM, HiResCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
 
23
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
24
  from pytorch_grad_cam.utils.image import show_cam_on_image
25
 
 
19
  from Nets import CustomResNet18
20
  from PIL import Image, ImageDraw, ImageFont
21
 
22
+ # from pytorch_grad_cam import GradCAM, HiResCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
23
+ from custom_code.custom_grad_cam import GradCAM, HiResCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
24
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
25
  from pytorch_grad_cam.utils.image import show_cam_on_image
26
 
src/custom_code/custom_grad_cam/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.grad_cam import GradCAM
2
+ from pytorch_grad_cam.hirescam import HiResCAM
3
+ from pytorch_grad_cam.grad_cam_elementwise import GradCAMElementWise
4
+ from pytorch_grad_cam.ablation_layer import AblationLayer, AblationLayerVit, AblationLayerFasterRCNN
5
+ from pytorch_grad_cam.ablation_cam import AblationCAM
6
+ from pytorch_grad_cam.xgrad_cam import XGradCAM
7
+ from pytorch_grad_cam.grad_cam_plusplus import GradCAMPlusPlus
8
+ from pytorch_grad_cam.score_cam import ScoreCAM
9
+ from pytorch_grad_cam.layer_cam import LayerCAM
10
+ from pytorch_grad_cam.eigen_cam import EigenCAM
11
+ from pytorch_grad_cam.eigen_grad_cam import EigenGradCAM
12
+ from pytorch_grad_cam.random_cam import RandomCAM
13
+ from pytorch_grad_cam.fullgrad_cam import FullGrad
14
+ from pytorch_grad_cam.guided_backprop import GuidedBackpropReLUModel
15
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
16
+ from pytorch_grad_cam.feature_factorization.deep_feature_factorization import DeepFeatureFactorization, run_dff_on_image
17
+ import pytorch_grad_cam.utils.model_targets
18
+ import pytorch_grad_cam.utils.reshape_transforms
19
+ import pytorch_grad_cam.metrics.cam_mult_image
20
+ import pytorch_grad_cam.metrics.road
src/custom_code/custom_grad_cam/ablation_cam.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import tqdm
4
+ from typing import Callable, List
5
+ from pytorch_grad_cam.base_cam import BaseCAM
6
+ from pytorch_grad_cam.utils.find_layers import replace_layer_recursive
7
+ from pytorch_grad_cam.ablation_layer import AblationLayer
8
+
9
+
10
+ """ Implementation of AblationCAM
11
+ https://openaccess.thecvf.com/content_WACV_2020/papers/Desai_Ablation-CAM_Visual_Explanations_for_Deep_Convolutional_Network_via_Gradient-free_Localization_WACV_2020_paper.pdf
12
+
13
+ Ablate individual activations, and then measure the drop in the target score.
14
+
15
+ In the current implementation, the target layer activations is cached, so it won't be re-computed.
16
+ However layers before it, if any, will not be cached.
17
+ This means that if the target layer is a large block, for example model.featuers (in vgg), there will
18
+ be a large save in run time.
19
+
20
+ Since we have to go over many channels and ablate them, and every channel ablation requires a forward pass,
21
+ it would be nice if we could avoid doing that for channels that won't contribute anwyay, making it much faster.
22
+ The parameter ratio_channels_to_ablate controls how many channels should be ablated, using an experimental method
23
+ (to be improved). The default 1.0 value means that all channels will be ablated.
24
+ """
25
+
26
+
27
+ class AblationCAM(BaseCAM):
28
+ def __init__(self,
29
+ model: torch.nn.Module,
30
+ target_layers: List[torch.nn.Module],
31
+ use_cuda: bool = False,
32
+ reshape_transform: Callable = None,
33
+ ablation_layer: torch.nn.Module = AblationLayer(),
34
+ batch_size: int = 32,
35
+ ratio_channels_to_ablate: float = 1.0) -> None:
36
+
37
+ super(AblationCAM, self).__init__(model,
38
+ target_layers,
39
+ use_cuda,
40
+ reshape_transform,
41
+ uses_gradients=False)
42
+ self.batch_size = batch_size
43
+ self.ablation_layer = ablation_layer
44
+ self.ratio_channels_to_ablate = ratio_channels_to_ablate
45
+
46
+ def save_activation(self, module, input, output) -> None:
47
+ """ Helper function to save the raw activations from the target layer """
48
+ self.activations = output
49
+
50
+ def assemble_ablation_scores(self,
51
+ new_scores: list,
52
+ original_score: float,
53
+ ablated_channels: np.ndarray,
54
+ number_of_channels: int) -> np.ndarray:
55
+ """ Take the value from the channels that were ablated,
56
+ and just set the original score for the channels that were skipped """
57
+
58
+ index = 0
59
+ result = []
60
+ sorted_indices = np.argsort(ablated_channels)
61
+ ablated_channels = ablated_channels[sorted_indices]
62
+ new_scores = np.float32(new_scores)[sorted_indices]
63
+
64
+ for i in range(number_of_channels):
65
+ if index < len(ablated_channels) and ablated_channels[index] == i:
66
+ weight = new_scores[index]
67
+ index = index + 1
68
+ else:
69
+ weight = original_score
70
+ result.append(weight)
71
+
72
+ return result
73
+
74
+ def get_cam_weights(self,
75
+ input_tensor: torch.Tensor,
76
+ target_layer: torch.nn.Module,
77
+ targets: List[Callable],
78
+ activations: torch.Tensor,
79
+ grads: torch.Tensor) -> np.ndarray:
80
+
81
+ # Do a forward pass, compute the target scores, and cache the
82
+ # activations
83
+ handle = target_layer.register_forward_hook(self.save_activation)
84
+ with torch.no_grad():
85
+ outputs = self.model(input_tensor)
86
+ handle.remove()
87
+ original_scores = np.float32(
88
+ [target(output).cpu().item() for target, output in zip(targets, outputs)])
89
+
90
+ # Replace the layer with the ablation layer.
91
+ # When we finish, we will replace it back, so the original model is
92
+ # unchanged.
93
+ ablation_layer = self.ablation_layer
94
+ replace_layer_recursive(self.model, target_layer, ablation_layer)
95
+
96
+ number_of_channels = activations.shape[1]
97
+ weights = []
98
+ # This is a "gradient free" method, so we don't need gradients here.
99
+ with torch.no_grad():
100
+ # Loop over each of the batch images and ablate activations for it.
101
+ for batch_index, (target, tensor) in enumerate(
102
+ zip(targets, input_tensor)):
103
+ new_scores = []
104
+ batch_tensor = tensor.repeat(self.batch_size, 1, 1, 1)
105
+
106
+ # Check which channels should be ablated. Normally this will be all channels,
107
+ # But we can also try to speed this up by using a low
108
+ # ratio_channels_to_ablate.
109
+ channels_to_ablate = ablation_layer.activations_to_be_ablated(
110
+ activations[batch_index, :], self.ratio_channels_to_ablate)
111
+ number_channels_to_ablate = len(channels_to_ablate)
112
+
113
+ for i in tqdm.tqdm(
114
+ range(
115
+ 0,
116
+ number_channels_to_ablate,
117
+ self.batch_size)):
118
+ if i + self.batch_size > number_channels_to_ablate:
119
+ batch_tensor = batch_tensor[:(
120
+ number_channels_to_ablate - i)]
121
+
122
+ # Change the state of the ablation layer so it ablates the next channels.
123
+ # TBD: Move this into the ablation layer forward pass.
124
+ ablation_layer.set_next_batch(
125
+ input_batch_index=batch_index,
126
+ activations=self.activations,
127
+ num_channels_to_ablate=batch_tensor.size(0))
128
+ score = [target(o).cpu().item()
129
+ for o in self.model(batch_tensor)]
130
+ new_scores.extend(score)
131
+ ablation_layer.indices = ablation_layer.indices[batch_tensor.size(
132
+ 0):]
133
+
134
+ new_scores = self.assemble_ablation_scores(
135
+ new_scores,
136
+ original_scores[batch_index],
137
+ channels_to_ablate,
138
+ number_of_channels)
139
+ weights.extend(new_scores)
140
+
141
+ weights = np.float32(weights)
142
+ weights = weights.reshape(activations.shape[:2])
143
+ original_scores = original_scores[:, None]
144
+ weights = (original_scores - weights) / original_scores
145
+
146
+ # Replace the model back to the original state
147
+ replace_layer_recursive(self.model, ablation_layer, target_layer)
148
+ return weights
src/custom_code/custom_grad_cam/ablation_cam_multilayer.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import tqdm
5
+ from pytorch_grad_cam.base_cam import BaseCAM
6
+
7
+
8
+ class AblationLayer(torch.nn.Module):
9
+ def __init__(self, layer, reshape_transform, indices):
10
+ super(AblationLayer, self).__init__()
11
+
12
+ self.layer = layer
13
+ self.reshape_transform = reshape_transform
14
+ # The channels to zero out:
15
+ self.indices = indices
16
+
17
+ def forward(self, x):
18
+ self.__call__(x)
19
+
20
+ def __call__(self, x):
21
+ output = self.layer(x)
22
+
23
+ # Hack to work with ViT,
24
+ # Since the activation channels are last and not first like in CNNs
25
+ # Probably should remove it?
26
+ if self.reshape_transform is not None:
27
+ output = output.transpose(1, 2)
28
+
29
+ for i in range(output.size(0)):
30
+
31
+ # Commonly the minimum activation will be 0,
32
+ # And then it makes sense to zero it out.
33
+ # However depending on the architecture,
34
+ # If the values can be negative, we use very negative values
35
+ # to perform the ablation, deviating from the paper.
36
+ if torch.min(output) == 0:
37
+ output[i, self.indices[i], :] = 0
38
+ else:
39
+ ABLATION_VALUE = 1e5
40
+ output[i, self.indices[i], :] = torch.min(
41
+ output) - ABLATION_VALUE
42
+
43
+ if self.reshape_transform is not None:
44
+ output = output.transpose(2, 1)
45
+
46
+ return output
47
+
48
+
49
+ def replace_layer_recursive(model, old_layer, new_layer):
50
+ for name, layer in model._modules.items():
51
+ if layer == old_layer:
52
+ model._modules[name] = new_layer
53
+ return True
54
+ elif replace_layer_recursive(layer, old_layer, new_layer):
55
+ return True
56
+ return False
57
+
58
+
59
+ class AblationCAM(BaseCAM):
60
+ def __init__(self, model, target_layers, use_cuda=False,
61
+ reshape_transform=None):
62
+ super(AblationCAM, self).__init__(model, target_layers, use_cuda,
63
+ reshape_transform)
64
+
65
+ if len(target_layers) > 1:
66
+ print(
67
+ "Warning. You are usign Ablation CAM with more than 1 layers. "
68
+ "This is supported only if all layers have the same output shape")
69
+
70
+ def set_ablation_layers(self):
71
+ self.ablation_layers = []
72
+ for target_layer in self.target_layers:
73
+ ablation_layer = AblationLayer(target_layer,
74
+ self.reshape_transform, indices=[])
75
+ self.ablation_layers.append(ablation_layer)
76
+ replace_layer_recursive(self.model, target_layer, ablation_layer)
77
+
78
+ def unset_ablation_layers(self):
79
+ # replace the model back to the original state
80
+ for ablation_layer, target_layer in zip(
81
+ self.ablation_layers, self.target_layers):
82
+ replace_layer_recursive(self.model, ablation_layer, target_layer)
83
+
84
+ def set_ablation_layer_batch_indices(self, indices):
85
+ for ablation_layer in self.ablation_layers:
86
+ ablation_layer.indices = indices
87
+
88
+ def trim_ablation_layer_batch_indices(self, keep):
89
+ for ablation_layer in self.ablation_layers:
90
+ ablation_layer.indices = ablation_layer.indices[:keep]
91
+
92
+ def get_cam_weights(self,
93
+ input_tensor,
94
+ target_category,
95
+ activations,
96
+ grads):
97
+ with torch.no_grad():
98
+ outputs = self.model(input_tensor).cpu().numpy()
99
+ original_scores = []
100
+ for i in range(input_tensor.size(0)):
101
+ original_scores.append(outputs[i, target_category[i]])
102
+ original_scores = np.float32(original_scores)
103
+
104
+ self.set_ablation_layers()
105
+
106
+ if hasattr(self, "batch_size"):
107
+ BATCH_SIZE = self.batch_size
108
+ else:
109
+ BATCH_SIZE = 32
110
+
111
+ number_of_channels = activations.shape[1]
112
+ weights = []
113
+
114
+ with torch.no_grad():
115
+ # Iterate over the input batch
116
+ for tensor, category in zip(input_tensor, target_category):
117
+ batch_tensor = tensor.repeat(BATCH_SIZE, 1, 1, 1)
118
+ for i in tqdm.tqdm(range(0, number_of_channels, BATCH_SIZE)):
119
+ self.set_ablation_layer_batch_indices(
120
+ list(range(i, i + BATCH_SIZE)))
121
+
122
+ if i + BATCH_SIZE > number_of_channels:
123
+ keep = number_of_channels - i
124
+ batch_tensor = batch_tensor[:keep]
125
+ self.trim_ablation_layer_batch_indices(self, keep)
126
+ score = self.model(batch_tensor)[:, category].cpu().numpy()
127
+ weights.extend(score)
128
+
129
+ weights = np.float32(weights)
130
+ weights = weights.reshape(activations.shape[:2])
131
+ original_scores = original_scores[:, None]
132
+ weights = (original_scores - weights) / original_scores
133
+
134
+ # replace the model back to the original state
135
+ self.unset_ablation_layers()
136
+ return weights
src/custom_code/custom_grad_cam/ablation_layer.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ import numpy as np
4
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
5
+
6
+
7
+ class AblationLayer(torch.nn.Module):
8
+ def __init__(self):
9
+ super(AblationLayer, self).__init__()
10
+
11
+ def objectiveness_mask_from_svd(self, activations, threshold=0.01):
12
+ """ Experimental method to get a binary mask to compare if the activation is worth ablating.
13
+ The idea is to apply the EigenCAM method by doing PCA on the activations.
14
+ Then we create a binary mask by comparing to a low threshold.
15
+ Areas that are masked out, are probably not interesting anyway.
16
+ """
17
+
18
+ projection = get_2d_projection(activations[None, :])[0, :]
19
+ projection = np.abs(projection)
20
+ projection = projection - projection.min()
21
+ projection = projection / projection.max()
22
+ projection = projection > threshold
23
+ return projection
24
+
25
+ def activations_to_be_ablated(
26
+ self,
27
+ activations,
28
+ ratio_channels_to_ablate=1.0):
29
+ """ Experimental method to get a binary mask to compare if the activation is worth ablating.
30
+ Create a binary CAM mask with objectiveness_mask_from_svd.
31
+ Score each Activation channel, by seeing how much of its values are inside the mask.
32
+ Then keep the top channels.
33
+
34
+ """
35
+ if ratio_channels_to_ablate == 1.0:
36
+ self.indices = np.int32(range(activations.shape[0]))
37
+ return self.indices
38
+
39
+ projection = self.objectiveness_mask_from_svd(activations)
40
+
41
+ scores = []
42
+ for channel in activations:
43
+ normalized = np.abs(channel)
44
+ normalized = normalized - normalized.min()
45
+ normalized = normalized / np.max(normalized)
46
+ score = (projection * normalized).sum() / normalized.sum()
47
+ scores.append(score)
48
+ scores = np.float32(scores)
49
+
50
+ indices = list(np.argsort(scores))
51
+ high_score_indices = indices[::-
52
+ 1][: int(len(indices) *
53
+ ratio_channels_to_ablate)]
54
+ low_score_indices = indices[: int(
55
+ len(indices) * ratio_channels_to_ablate)]
56
+ self.indices = np.int32(high_score_indices + low_score_indices)
57
+ return self.indices
58
+
59
+ def set_next_batch(
60
+ self,
61
+ input_batch_index,
62
+ activations,
63
+ num_channels_to_ablate):
64
+ """ This creates the next batch of activations from the layer.
65
+ Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
66
+ """
67
+ self.activations = activations[input_batch_index, :, :, :].clone(
68
+ ).unsqueeze(0).repeat(num_channels_to_ablate, 1, 1, 1)
69
+
70
+ def __call__(self, x):
71
+ output = self.activations
72
+ for i in range(output.size(0)):
73
+ # Commonly the minimum activation will be 0,
74
+ # And then it makes sense to zero it out.
75
+ # However depending on the architecture,
76
+ # If the values can be negative, we use very negative values
77
+ # to perform the ablation, deviating from the paper.
78
+ if torch.min(output) == 0:
79
+ output[i, self.indices[i], :] = 0
80
+ else:
81
+ ABLATION_VALUE = 1e7
82
+ output[i, self.indices[i], :] = torch.min(
83
+ output) - ABLATION_VALUE
84
+
85
+ return output
86
+
87
+
88
+ class AblationLayerVit(AblationLayer):
89
+ def __init__(self):
90
+ super(AblationLayerVit, self).__init__()
91
+
92
+ def __call__(self, x):
93
+ output = self.activations
94
+ output = output.transpose(1, len(output.shape) - 1)
95
+ for i in range(output.size(0)):
96
+
97
+ # Commonly the minimum activation will be 0,
98
+ # And then it makes sense to zero it out.
99
+ # However depending on the architecture,
100
+ # If the values can be negative, we use very negative values
101
+ # to perform the ablation, deviating from the paper.
102
+ if torch.min(output) == 0:
103
+ output[i, self.indices[i], :] = 0
104
+ else:
105
+ ABLATION_VALUE = 1e7
106
+ output[i, self.indices[i], :] = torch.min(
107
+ output) - ABLATION_VALUE
108
+
109
+ output = output.transpose(len(output.shape) - 1, 1)
110
+
111
+ return output
112
+
113
+ def set_next_batch(
114
+ self,
115
+ input_batch_index,
116
+ activations,
117
+ num_channels_to_ablate):
118
+ """ This creates the next batch of activations from the layer.
119
+ Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
120
+ """
121
+ repeat_params = [num_channels_to_ablate] + \
122
+ len(activations.shape[:-1]) * [1]
123
+ self.activations = activations[input_batch_index, :, :].clone(
124
+ ).unsqueeze(0).repeat(*repeat_params)
125
+
126
+
127
+ class AblationLayerFasterRCNN(AblationLayer):
128
+ def __init__(self):
129
+ super(AblationLayerFasterRCNN, self).__init__()
130
+
131
+ def set_next_batch(
132
+ self,
133
+ input_batch_index,
134
+ activations,
135
+ num_channels_to_ablate):
136
+ """ Extract the next batch member from activations,
137
+ and repeat it num_channels_to_ablate times.
138
+ """
139
+ self.activations = OrderedDict()
140
+ for key, value in activations.items():
141
+ fpn_activation = value[input_batch_index,
142
+ :, :, :].clone().unsqueeze(0)
143
+ self.activations[key] = fpn_activation.repeat(
144
+ num_channels_to_ablate, 1, 1, 1)
145
+
146
+ def __call__(self, x):
147
+ result = self.activations
148
+ layers = {0: '0', 1: '1', 2: '2', 3: '3', 4: 'pool'}
149
+ num_channels_to_ablate = result['pool'].size(0)
150
+ for i in range(num_channels_to_ablate):
151
+ pyramid_layer = int(self.indices[i] / 256)
152
+ index_in_pyramid_layer = int(self.indices[i] % 256)
153
+ result[layers[pyramid_layer]][i,
154
+ index_in_pyramid_layer, :, :] = -1000
155
+ return result
src/custom_code/custom_grad_cam/activations_and_gradients.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class ActivationsAndGradients:
2
+ """ Class for extracting activations and
3
+ registering gradients from targetted intermediate layers """
4
+
5
+ def __init__(self, model, target_layers, reshape_transform):
6
+ self.model = model
7
+ self.gradients = []
8
+ self.activations = []
9
+ self.reshape_transform = reshape_transform
10
+ self.handles = []
11
+ for target_layer in target_layers:
12
+ self.handles.append(
13
+ target_layer.register_forward_hook(self.save_activation))
14
+ # Because of https://github.com/pytorch/pytorch/issues/61519,
15
+ # we don't use backward hook to record gradients.
16
+ self.handles.append(
17
+ target_layer.register_forward_hook(self.save_gradient))
18
+
19
+ def save_activation(self, module, input, output):
20
+ activation = output
21
+
22
+ if self.reshape_transform is not None:
23
+ activation = self.reshape_transform(activation)
24
+ self.activations.append(activation.cpu().detach())
25
+
26
+ def save_gradient(self, module, input, output):
27
+ if not hasattr(output, "requires_grad") or not output.requires_grad:
28
+ # You can only register hooks on tensor requires grad.
29
+ return
30
+
31
+ # Gradients are computed in reverse order
32
+ def _store_grad(grad):
33
+ if self.reshape_transform is not None:
34
+ grad = self.reshape_transform(grad)
35
+ self.gradients = [grad.cpu().detach()] + self.gradients
36
+
37
+ output.register_hook(_store_grad)
38
+
39
+ def __call__(self, x):
40
+ self.gradients = []
41
+ self.activations = []
42
+ return self.model(x)
43
+
44
+ def release(self):
45
+ for handle in self.handles:
46
+ handle.remove()
src/custom_code/custom_grad_cam/base_cam.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import ttach as tta
4
+ from typing import Callable, List, Tuple
5
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
6
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
7
+ from pytorch_grad_cam.utils.image import scale_cam_image
8
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
9
+
10
+
11
+ class BaseCAM:
12
+ def __init__(self,
13
+ model: torch.nn.Module,
14
+ target_layers: List[torch.nn.Module],
15
+ use_cuda: bool = False,
16
+ reshape_transform: Callable = None,
17
+ compute_input_gradient: bool = False,
18
+ uses_gradients: bool = True) -> None:
19
+ self.model = model.eval()
20
+ self.target_layers = target_layers
21
+ self.cuda = use_cuda
22
+ if self.cuda:
23
+ self.model = model.cuda()
24
+ self.reshape_transform = reshape_transform
25
+ self.compute_input_gradient = compute_input_gradient
26
+ self.uses_gradients = uses_gradients
27
+ self.activations_and_grads = ActivationsAndGradients(
28
+ self.model, target_layers, reshape_transform)
29
+ self.outputs = None
30
+
31
+ """ Get a vector of weights for every channel in the target layer.
32
+ Methods that return weights channels,
33
+ will typically need to only implement this function. """
34
+
35
+ def get_cam_weights(self,
36
+ input_tensor: torch.Tensor,
37
+ target_layers: List[torch.nn.Module],
38
+ targets: List[torch.nn.Module],
39
+ activations: torch.Tensor,
40
+ grads: torch.Tensor) -> np.ndarray:
41
+ raise Exception("Not Implemented")
42
+
43
+ def get_cam_image(self,
44
+ input_tensor: torch.Tensor,
45
+ target_layer: torch.nn.Module,
46
+ targets: List[torch.nn.Module],
47
+ activations: torch.Tensor,
48
+ grads: torch.Tensor,
49
+ eigen_smooth: bool = False) -> np.ndarray:
50
+
51
+ weights = self.get_cam_weights(input_tensor,
52
+ target_layer,
53
+ targets,
54
+ activations,
55
+ grads)
56
+ weighted_activations = weights[:, :, None, None] * activations
57
+ if eigen_smooth:
58
+ cam = get_2d_projection(weighted_activations)
59
+ else:
60
+ cam = weighted_activations.sum(axis=1)
61
+ return cam
62
+
63
+ def forward(self,
64
+ input_tensor: torch.Tensor,
65
+ targets: List[torch.nn.Module],
66
+ eigen_smooth: bool = False) -> np.ndarray:
67
+
68
+ if self.cuda:
69
+ input_tensor = input_tensor.cuda()
70
+
71
+ if self.compute_input_gradient:
72
+ input_tensor = torch.autograd.Variable(input_tensor,
73
+ requires_grad=True)
74
+
75
+ outputs = self.activations_and_grads(input_tensor)
76
+ self.outputs = outputs
77
+ if targets is None:
78
+ target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
79
+ targets = [ClassifierOutputTarget(
80
+ category) for category in target_categories]
81
+
82
+ if self.uses_gradients:
83
+ self.model.zero_grad()
84
+ loss = sum([target(output)
85
+ for target, output in zip(targets, outputs)])
86
+ loss.backward(retain_graph=True)
87
+
88
+ # In most of the saliency attribution papers, the saliency is
89
+ # computed with a single target layer.
90
+ # Commonly it is the last convolutional layer.
91
+ # Here we support passing a list with multiple target layers.
92
+ # It will compute the saliency image for every image,
93
+ # and then aggregate them (with a default mean aggregation).
94
+ # This gives you more flexibility in case you just want to
95
+ # use all conv layers for example, all Batchnorm layers,
96
+ # or something else.
97
+ cam_per_layer = self.compute_cam_per_layer(input_tensor,
98
+ targets,
99
+ eigen_smooth)
100
+ return self.aggregate_multi_layers(cam_per_layer)
101
+
102
+ def get_target_width_height(self,
103
+ input_tensor: torch.Tensor) -> Tuple[int, int]:
104
+ width, height = input_tensor.size(-1), input_tensor.size(-2)
105
+ return width, height
106
+
107
+ def compute_cam_per_layer(
108
+ self,
109
+ input_tensor: torch.Tensor,
110
+ targets: List[torch.nn.Module],
111
+ eigen_smooth: bool) -> np.ndarray:
112
+ activations_list = [a.cpu().data.numpy()
113
+ for a in self.activations_and_grads.activations]
114
+ grads_list = [g.cpu().data.numpy()
115
+ for g in self.activations_and_grads.gradients]
116
+ target_size = self.get_target_width_height(input_tensor)
117
+
118
+ cam_per_target_layer = []
119
+ # Loop over the saliency image from every layer
120
+ for i in range(len(self.target_layers)):
121
+ target_layer = self.target_layers[i]
122
+ layer_activations = None
123
+ layer_grads = None
124
+ if i < len(activations_list):
125
+ layer_activations = activations_list[i]
126
+ if i < len(grads_list):
127
+ layer_grads = grads_list[i]
128
+
129
+ cam = self.get_cam_image(input_tensor,
130
+ target_layer,
131
+ targets,
132
+ layer_activations,
133
+ layer_grads,
134
+ eigen_smooth)
135
+ cam = np.maximum(cam, 0)
136
+ scaled = scale_cam_image(cam, target_size)
137
+ cam_per_target_layer.append(scaled[:, None, :])
138
+
139
+ return cam_per_target_layer
140
+
141
+ def aggregate_multi_layers(
142
+ self,
143
+ cam_per_target_layer: np.ndarray) -> np.ndarray:
144
+ cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
145
+ cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
146
+ result = np.mean(cam_per_target_layer, axis=1)
147
+ return scale_cam_image(result)
148
+
149
+ def forward_augmentation_smoothing(self,
150
+ input_tensor: torch.Tensor,
151
+ targets: List[torch.nn.Module],
152
+ eigen_smooth: bool = False) -> np.ndarray:
153
+ transforms = tta.Compose(
154
+ [
155
+ tta.HorizontalFlip(),
156
+ tta.Multiply(factors=[0.9, 1, 1.1]),
157
+ ]
158
+ )
159
+ cams = []
160
+ for transform in transforms:
161
+ augmented_tensor = transform.augment_image(input_tensor)
162
+ cam = self.forward(augmented_tensor,
163
+ targets,
164
+ eigen_smooth)
165
+
166
+ # The ttach library expects a tensor of size BxCxHxW
167
+ cam = cam[:, None, :, :]
168
+ cam = torch.from_numpy(cam)
169
+ cam = transform.deaugment_mask(cam)
170
+
171
+ # Back to numpy float32, HxW
172
+ cam = cam.numpy()
173
+ cam = cam[:, 0, :, :]
174
+ cams.append(cam)
175
+
176
+ cam = np.mean(np.float32(cams), axis=0)
177
+ return cam
178
+
179
+ def __call__(self,
180
+ input_tensor: torch.Tensor,
181
+ targets: List[torch.nn.Module] = None,
182
+ aug_smooth: bool = False,
183
+ eigen_smooth: bool = False) -> np.ndarray:
184
+
185
+ # Smooth the CAM result with test time augmentation
186
+ if aug_smooth is True:
187
+ return self.forward_augmentation_smoothing(
188
+ input_tensor, targets, eigen_smooth)
189
+
190
+ return self.forward(input_tensor,
191
+ targets, eigen_smooth)
192
+
193
+ def __del__(self):
194
+ self.activations_and_grads.release()
195
+
196
+ def __enter__(self):
197
+ return self
198
+
199
+ def __exit__(self, exc_type, exc_value, exc_tb):
200
+ self.activations_and_grads.release()
201
+ if isinstance(exc_value, IndexError):
202
+ # Handle IndexError here...
203
+ print(
204
+ f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
205
+ return True
src/custom_code/custom_grad_cam/eigen_cam.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.base_cam import BaseCAM
2
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
3
+
4
+ # https://arxiv.org/abs/2008.00299
5
+
6
+
7
+ class EigenCAM(BaseCAM):
8
+ def __init__(self, model, target_layers, use_cuda=False,
9
+ reshape_transform=None):
10
+ super(EigenCAM, self).__init__(model,
11
+ target_layers,
12
+ use_cuda,
13
+ reshape_transform,
14
+ uses_gradients=False)
15
+
16
+ def get_cam_image(self,
17
+ input_tensor,
18
+ target_layer,
19
+ target_category,
20
+ activations,
21
+ grads,
22
+ eigen_smooth):
23
+ return get_2d_projection(activations)
src/custom_code/custom_grad_cam/eigen_grad_cam.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.base_cam import BaseCAM
2
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
3
+
4
+ # Like Eigen CAM: https://arxiv.org/abs/2008.00299
5
+ # But multiply the activations x gradients
6
+
7
+
8
+ class EigenGradCAM(BaseCAM):
9
+ def __init__(self, model, target_layers, use_cuda=False,
10
+ reshape_transform=None):
11
+ super(EigenGradCAM, self).__init__(model, target_layers, use_cuda,
12
+ reshape_transform)
13
+
14
+ def get_cam_image(self,
15
+ input_tensor,
16
+ target_layer,
17
+ target_category,
18
+ activations,
19
+ grads,
20
+ eigen_smooth):
21
+ return get_2d_projection(grads * activations)
src/custom_code/custom_grad_cam/feature_factorization/__init__.py ADDED
File without changes
src/custom_code/custom_grad_cam/feature_factorization/deep_feature_factorization.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import torch
4
+ from typing import Callable, List, Tuple, Optional
5
+ from sklearn.decomposition import NMF
6
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
7
+ from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
8
+
9
+
10
+ def dff(activations: np.ndarray, n_components: int = 5):
11
+ """ Compute Deep Feature Factorization on a 2d Activations tensor.
12
+
13
+ :param activations: A numpy array of shape batch x channels x height x width
14
+ :param n_components: The number of components for the non negative matrix factorization
15
+ :returns: A tuple of the concepts (a numpy array with shape channels x components),
16
+ and the explanation heatmaps (a numpy arary with shape batch x height x width)
17
+ """
18
+
19
+ batch_size, channels, h, w = activations.shape
20
+ reshaped_activations = activations.transpose((1, 0, 2, 3))
21
+ reshaped_activations[np.isnan(reshaped_activations)] = 0
22
+ reshaped_activations = reshaped_activations.reshape(
23
+ reshaped_activations.shape[0], -1)
24
+ offset = reshaped_activations.min(axis=-1)
25
+ reshaped_activations = reshaped_activations - offset[:, None]
26
+
27
+ model = NMF(n_components=n_components, init='random', random_state=0)
28
+ W = model.fit_transform(reshaped_activations)
29
+ H = model.components_
30
+ concepts = W + offset[:, None]
31
+ explanations = H.reshape(n_components, batch_size, h, w)
32
+ explanations = explanations.transpose((1, 0, 2, 3))
33
+ return concepts, explanations
34
+
35
+
36
+ class DeepFeatureFactorization:
37
+ """ Deep Feature Factorization: https://arxiv.org/abs/1806.10206
38
+ This gets a model andcomputes the 2D activations for a target layer,
39
+ and computes Non Negative Matrix Factorization on the activations.
40
+
41
+ Optionally it runs a computation on the concept embeddings,
42
+ like running a classifier on them.
43
+
44
+ The explanation heatmaps are scalled to the range [0, 1]
45
+ and to the input tensor width and height.
46
+ """
47
+
48
+ def __init__(self,
49
+ model: torch.nn.Module,
50
+ target_layer: torch.nn.Module,
51
+ reshape_transform: Callable = None,
52
+ computation_on_concepts=None
53
+ ):
54
+ self.model = model
55
+ self.computation_on_concepts = computation_on_concepts
56
+ self.activations_and_grads = ActivationsAndGradients(
57
+ self.model, [target_layer], reshape_transform)
58
+
59
+ def __call__(self,
60
+ input_tensor: torch.Tensor,
61
+ n_components: int = 16):
62
+ batch_size, channels, h, w = input_tensor.size()
63
+ _ = self.activations_and_grads(input_tensor)
64
+
65
+ with torch.no_grad():
66
+ activations = self.activations_and_grads.activations[0].cpu(
67
+ ).numpy()
68
+
69
+ concepts, explanations = dff(activations, n_components=n_components)
70
+
71
+ processed_explanations = []
72
+
73
+ for batch in explanations:
74
+ processed_explanations.append(scale_cam_image(batch, (w, h)))
75
+
76
+ if self.computation_on_concepts:
77
+ with torch.no_grad():
78
+ concept_tensors = torch.from_numpy(
79
+ np.float32(concepts).transpose((1, 0)))
80
+ concept_outputs = self.computation_on_concepts(
81
+ concept_tensors).cpu().numpy()
82
+ return concepts, processed_explanations, concept_outputs
83
+ else:
84
+ return concepts, processed_explanations
85
+
86
+ def __del__(self):
87
+ self.activations_and_grads.release()
88
+
89
+ def __exit__(self, exc_type, exc_value, exc_tb):
90
+ self.activations_and_grads.release()
91
+ if isinstance(exc_value, IndexError):
92
+ # Handle IndexError here...
93
+ print(
94
+ f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}")
95
+ return True
96
+
97
+
98
+ def run_dff_on_image(model: torch.nn.Module,
99
+ target_layer: torch.nn.Module,
100
+ classifier: torch.nn.Module,
101
+ img_pil: Image,
102
+ img_tensor: torch.Tensor,
103
+ reshape_transform=Optional[Callable],
104
+ n_components: int = 5,
105
+ top_k: int = 2) -> np.ndarray:
106
+ """ Helper function to create a Deep Feature Factorization visualization for a single image.
107
+ TBD: Run this on a batch with several images.
108
+ """
109
+ rgb_img_float = np.array(img_pil) / 255
110
+ dff = DeepFeatureFactorization(model=model,
111
+ reshape_transform=reshape_transform,
112
+ target_layer=target_layer,
113
+ computation_on_concepts=classifier)
114
+
115
+ concepts, batch_explanations, concept_outputs = dff(
116
+ img_tensor[None, :], n_components)
117
+
118
+ concept_outputs = torch.softmax(
119
+ torch.from_numpy(concept_outputs),
120
+ axis=-1).numpy()
121
+ concept_label_strings = create_labels_legend(concept_outputs,
122
+ labels=model.config.id2label,
123
+ top_k=top_k)
124
+ visualization = show_factorization_on_image(
125
+ rgb_img_float,
126
+ batch_explanations[0],
127
+ image_weight=0.3,
128
+ concept_labels=concept_label_strings)
129
+
130
+ result = np.hstack((np.array(img_pil), visualization))
131
+ return result
src/custom_code/custom_grad_cam/feature_factorization/utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import numpy as np
3
+ from typing import Dict
4
+
5
+
6
+ def create_labels_legend(concept_scores: np.ndarray,
7
+ labels: Dict[int, str],
8
+ top_k=2):
9
+ concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
10
+ concept_labels_topk = []
11
+ for concept_index in range(concept_categories.shape[0]):
12
+ categories = concept_categories[concept_index, :]
13
+ concept_labels = []
14
+ for category in categories:
15
+ score = concept_scores[concept_index, category]
16
+ label = f"{labels[category].split(',')[0]}:{score:.2f}"
17
+ concept_labels.append(label)
18
+ concept_labels_topk.append("\n".join(concept_labels))
19
+ return concept_labels_topk
src/custom_code/custom_grad_cam/fullgrad_cam.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from pytorch_grad_cam.base_cam import BaseCAM
4
+ from pytorch_grad_cam.utils.find_layers import find_layer_predicate_recursive
5
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
6
+ from pytorch_grad_cam.utils.image import scale_accross_batch_and_channels, scale_cam_image
7
+
8
+ # https://arxiv.org/abs/1905.00780
9
+
10
+
11
+ class FullGrad(BaseCAM):
12
+ def __init__(self, model, target_layers, use_cuda=False,
13
+ reshape_transform=None):
14
+ if len(target_layers) > 0:
15
+ print(
16
+ "Warning: target_layers is ignored in FullGrad. All bias layers will be used instead")
17
+
18
+ def layer_with_2D_bias(layer):
19
+ bias_target_layers = [torch.nn.Conv2d, torch.nn.BatchNorm2d]
20
+ if type(layer) in bias_target_layers and layer.bias is not None:
21
+ return True
22
+ return False
23
+ target_layers = find_layer_predicate_recursive(
24
+ model, layer_with_2D_bias)
25
+ super(
26
+ FullGrad,
27
+ self).__init__(
28
+ model,
29
+ target_layers,
30
+ use_cuda,
31
+ reshape_transform,
32
+ compute_input_gradient=True)
33
+ self.bias_data = [self.get_bias_data(
34
+ layer).cpu().numpy() for layer in target_layers]
35
+
36
+ def get_bias_data(self, layer):
37
+ # Borrowed from official paper impl:
38
+ # https://github.com/idiap/fullgrad-saliency/blob/master/saliency/tensor_extractor.py#L47
39
+ if isinstance(layer, torch.nn.BatchNorm2d):
40
+ bias = - (layer.running_mean * layer.weight
41
+ / torch.sqrt(layer.running_var + layer.eps)) + layer.bias
42
+ return bias.data
43
+ else:
44
+ return layer.bias.data
45
+
46
+ def compute_cam_per_layer(
47
+ self,
48
+ input_tensor,
49
+ target_category,
50
+ eigen_smooth):
51
+ input_grad = input_tensor.grad.data.cpu().numpy()
52
+ grads_list = [g.cpu().data.numpy() for g in
53
+ self.activations_and_grads.gradients]
54
+ cam_per_target_layer = []
55
+ target_size = self.get_target_width_height(input_tensor)
56
+
57
+ gradient_multiplied_input = input_grad * input_tensor.data.cpu().numpy()
58
+ gradient_multiplied_input = np.abs(gradient_multiplied_input)
59
+ gradient_multiplied_input = scale_accross_batch_and_channels(
60
+ gradient_multiplied_input,
61
+ target_size)
62
+ cam_per_target_layer.append(gradient_multiplied_input)
63
+
64
+ # Loop over the saliency image from every layer
65
+ assert(len(self.bias_data) == len(grads_list))
66
+ for bias, grads in zip(self.bias_data, grads_list):
67
+ bias = bias[None, :, None, None]
68
+ # In the paper they take the absolute value,
69
+ # but possibily taking only the positive gradients will work
70
+ # better.
71
+ bias_grad = np.abs(bias * grads)
72
+ result = scale_accross_batch_and_channels(
73
+ bias_grad, target_size)
74
+ result = np.sum(result, axis=1)
75
+ cam_per_target_layer.append(result[:, None, :])
76
+ cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
77
+ if eigen_smooth:
78
+ # Resize to a smaller image, since this method typically has a very large number of channels,
79
+ # and then consumes a lot of memory
80
+ cam_per_target_layer = scale_accross_batch_and_channels(
81
+ cam_per_target_layer, (target_size[0] // 8, target_size[1] // 8))
82
+ cam_per_target_layer = get_2d_projection(cam_per_target_layer)
83
+ cam_per_target_layer = cam_per_target_layer[:, None, :, :]
84
+ cam_per_target_layer = scale_accross_batch_and_channels(
85
+ cam_per_target_layer,
86
+ target_size)
87
+ else:
88
+ cam_per_target_layer = np.sum(
89
+ cam_per_target_layer, axis=1)[:, None, :]
90
+
91
+ return cam_per_target_layer
92
+
93
+ def aggregate_multi_layers(self, cam_per_target_layer):
94
+ result = np.sum(cam_per_target_layer, axis=1)
95
+ return scale_cam_image(result)
src/custom_code/custom_grad_cam/grad_cam.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+
5
+ class GradCAM(BaseCAM):
6
+ def __init__(self, model, target_layers, use_cuda=False,
7
+ reshape_transform=None):
8
+ super(
9
+ GradCAM,
10
+ self).__init__(
11
+ model,
12
+ target_layers,
13
+ use_cuda,
14
+ reshape_transform)
15
+
16
+ def get_cam_weights(self,
17
+ input_tensor,
18
+ target_layer,
19
+ target_category,
20
+ activations,
21
+ grads):
22
+ return np.mean(grads, axis=(2, 3))
src/custom_code/custom_grad_cam/grad_cam_elementwise.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+
6
+ class GradCAMElementWise(BaseCAM):
7
+ def __init__(self, model, target_layers, use_cuda=False,
8
+ reshape_transform=None):
9
+ super(
10
+ GradCAMElementWise,
11
+ self).__init__(
12
+ model,
13
+ target_layers,
14
+ use_cuda,
15
+ reshape_transform)
16
+
17
+ def get_cam_image(self,
18
+ input_tensor,
19
+ target_layer,
20
+ target_category,
21
+ activations,
22
+ grads,
23
+ eigen_smooth):
24
+ elementwise_activations = np.maximum(grads * activations, 0)
25
+
26
+ if eigen_smooth:
27
+ cam = get_2d_projection(elementwise_activations)
28
+ else:
29
+ cam = elementwise_activations.sum(axis=1)
30
+ return cam
src/custom_code/custom_grad_cam/grad_cam_plusplus.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+ # https://arxiv.org/abs/1710.11063
5
+
6
+
7
+ class GradCAMPlusPlus(BaseCAM):
8
+ def __init__(self, model, target_layers, use_cuda=False,
9
+ reshape_transform=None):
10
+ super(GradCAMPlusPlus, self).__init__(model, target_layers, use_cuda,
11
+ reshape_transform)
12
+
13
+ def get_cam_weights(self,
14
+ input_tensor,
15
+ target_layers,
16
+ target_category,
17
+ activations,
18
+ grads):
19
+ grads_power_2 = grads**2
20
+ grads_power_3 = grads_power_2 * grads
21
+ # Equation 19 in https://arxiv.org/abs/1710.11063
22
+ sum_activations = np.sum(activations, axis=(2, 3))
23
+ eps = 0.000001
24
+ aij = grads_power_2 / (2 * grads_power_2 +
25
+ sum_activations[:, :, None, None] * grads_power_3 + eps)
26
+ # Now bring back the ReLU from eq.7 in the paper,
27
+ # And zero out aijs where the activations are 0
28
+ aij = np.where(grads != 0, aij, 0)
29
+
30
+ weights = np.maximum(grads, 0) * aij
31
+ weights = np.sum(weights, axis=(2, 3))
32
+ return weights
src/custom_code/custom_grad_cam/guided_backprop.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch.autograd import Function
4
+ from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive
5
+
6
+
7
+ class GuidedBackpropReLU(Function):
8
+ @staticmethod
9
+ def forward(self, input_img):
10
+ positive_mask = (input_img > 0).type_as(input_img)
11
+ output = torch.addcmul(
12
+ torch.zeros(
13
+ input_img.size()).type_as(input_img),
14
+ input_img,
15
+ positive_mask)
16
+ self.save_for_backward(input_img, output)
17
+ return output
18
+
19
+ @staticmethod
20
+ def backward(self, grad_output):
21
+ input_img, output = self.saved_tensors
22
+ grad_input = None
23
+
24
+ positive_mask_1 = (input_img > 0).type_as(grad_output)
25
+ positive_mask_2 = (grad_output > 0).type_as(grad_output)
26
+ grad_input = torch.addcmul(
27
+ torch.zeros(
28
+ input_img.size()).type_as(input_img),
29
+ torch.addcmul(
30
+ torch.zeros(
31
+ input_img.size()).type_as(input_img),
32
+ grad_output,
33
+ positive_mask_1),
34
+ positive_mask_2)
35
+ return grad_input
36
+
37
+
38
+ class GuidedBackpropReLUasModule(torch.nn.Module):
39
+ def __init__(self):
40
+ super(GuidedBackpropReLUasModule, self).__init__()
41
+
42
+ def forward(self, input_img):
43
+ return GuidedBackpropReLU.apply(input_img)
44
+
45
+
46
+ class GuidedBackpropReLUModel:
47
+ def __init__(self, model, use_cuda):
48
+ self.model = model
49
+ self.model.eval()
50
+ self.cuda = use_cuda
51
+ if self.cuda:
52
+ self.model = self.model.cuda()
53
+
54
+ def forward(self, input_img):
55
+ return self.model(input_img)
56
+
57
+ def recursive_replace_relu_with_guidedrelu(self, module_top):
58
+
59
+ for idx, module in module_top._modules.items():
60
+ self.recursive_replace_relu_with_guidedrelu(module)
61
+ if module.__class__.__name__ == 'ReLU':
62
+ module_top._modules[idx] = GuidedBackpropReLU.apply
63
+ print("b")
64
+
65
+ def recursive_replace_guidedrelu_with_relu(self, module_top):
66
+ try:
67
+ for idx, module in module_top._modules.items():
68
+ self.recursive_replace_guidedrelu_with_relu(module)
69
+ if module == GuidedBackpropReLU.apply:
70
+ module_top._modules[idx] = torch.nn.ReLU()
71
+ except BaseException:
72
+ pass
73
+
74
+ def __call__(self, input_img, target_category=None):
75
+ replace_all_layer_type_recursive(self.model,
76
+ torch.nn.ReLU,
77
+ GuidedBackpropReLUasModule())
78
+
79
+ if self.cuda:
80
+ input_img = input_img.cuda()
81
+
82
+ input_img = input_img.requires_grad_(True)
83
+
84
+ output = self.forward(input_img)
85
+
86
+ if target_category is None:
87
+ target_category = np.argmax(output.cpu().data.numpy())
88
+
89
+ loss = output[0, target_category]
90
+ loss.backward(retain_graph=True)
91
+
92
+ output = input_img.grad.cpu().data.numpy()
93
+ output = output[0, :, :, :]
94
+ output = output.transpose((1, 2, 0))
95
+
96
+ replace_all_layer_type_recursive(self.model,
97
+ GuidedBackpropReLUasModule,
98
+ torch.nn.ReLU())
99
+
100
+ return output
src/custom_code/custom_grad_cam/hirescam.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+
6
+ class HiResCAM(BaseCAM):
7
+ def __init__(self, model, target_layers, use_cuda=False,
8
+ reshape_transform=None):
9
+ super(
10
+ HiResCAM,
11
+ self).__init__(
12
+ model,
13
+ target_layers,
14
+ use_cuda,
15
+ reshape_transform)
16
+
17
+ def get_cam_image(self,
18
+ input_tensor,
19
+ target_layer,
20
+ target_category,
21
+ activations,
22
+ grads,
23
+ eigen_smooth):
24
+ elementwise_activations = grads * activations
25
+
26
+ if eigen_smooth:
27
+ print(
28
+ "Warning: HiResCAM's faithfulness guarantees do not hold if smoothing is applied")
29
+ cam = get_2d_projection(elementwise_activations)
30
+ else:
31
+ cam = elementwise_activations.sum(axis=1)
32
+ return cam
src/custom_code/custom_grad_cam/layer_cam.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+ # https://ieeexplore.ieee.org/document/9462463
6
+
7
+
8
+ class LayerCAM(BaseCAM):
9
+ def __init__(
10
+ self,
11
+ model,
12
+ target_layers,
13
+ use_cuda=False,
14
+ reshape_transform=None):
15
+ super(
16
+ LayerCAM,
17
+ self).__init__(
18
+ model,
19
+ target_layers,
20
+ use_cuda,
21
+ reshape_transform)
22
+
23
+ def get_cam_image(self,
24
+ input_tensor,
25
+ target_layer,
26
+ target_category,
27
+ activations,
28
+ grads,
29
+ eigen_smooth):
30
+ spatial_weighted_activations = np.maximum(grads, 0) * activations
31
+
32
+ if eigen_smooth:
33
+ cam = get_2d_projection(spatial_weighted_activations)
34
+ else:
35
+ cam = spatial_weighted_activations.sum(axis=1)
36
+ return cam
src/custom_code/custom_grad_cam/metrics/__init__.py ADDED
File without changes
src/custom_code/custom_grad_cam/metrics/cam_mult_image.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from typing import List, Callable
4
+ from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric
5
+
6
+
7
+ def multiply_tensor_with_cam(input_tensor: torch.Tensor,
8
+ cam: torch.Tensor):
9
+ """ Multiply an input tensor (after normalization)
10
+ with a pixel attribution map
11
+ """
12
+ return input_tensor * cam
13
+
14
+
15
+ class CamMultImageConfidenceChange(PerturbationConfidenceMetric):
16
+ def __init__(self):
17
+ super(CamMultImageConfidenceChange,
18
+ self).__init__(multiply_tensor_with_cam)
19
+
20
+
21
+ class DropInConfidence(CamMultImageConfidenceChange):
22
+ def __init__(self):
23
+ super(DropInConfidence, self).__init__()
24
+
25
+ def __call__(self, *args, **kwargs):
26
+ scores = super(DropInConfidence, self).__call__(*args, **kwargs)
27
+ scores = -scores
28
+ return np.maximum(scores, 0)
29
+
30
+
31
+ class IncreaseInConfidence(CamMultImageConfidenceChange):
32
+ def __init__(self):
33
+ super(IncreaseInConfidence, self).__init__()
34
+
35
+ def __call__(self, *args, **kwargs):
36
+ scores = super(IncreaseInConfidence, self).__call__(*args, **kwargs)
37
+ return np.float32(scores > 0)
src/custom_code/custom_grad_cam/metrics/perturbation_confidence.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from typing import List, Callable
4
+
5
+ import numpy as np
6
+ import cv2
7
+
8
+
9
+ class PerturbationConfidenceMetric:
10
+ def __init__(self, perturbation):
11
+ self.perturbation = perturbation
12
+
13
+ def __call__(self, input_tensor: torch.Tensor,
14
+ cams: np.ndarray,
15
+ targets: List[Callable],
16
+ model: torch.nn.Module,
17
+ return_visualization=False,
18
+ return_diff=True):
19
+
20
+ if return_diff:
21
+ with torch.no_grad():
22
+ outputs = model(input_tensor)
23
+ scores = [target(output).cpu().numpy()
24
+ for target, output in zip(targets, outputs)]
25
+ scores = np.float32(scores)
26
+
27
+ batch_size = input_tensor.size(0)
28
+ perturbated_tensors = []
29
+ for i in range(batch_size):
30
+ cam = cams[i]
31
+ tensor = self.perturbation(input_tensor[i, ...].cpu(),
32
+ torch.from_numpy(cam))
33
+ tensor = tensor.to(input_tensor.device)
34
+ perturbated_tensors.append(tensor.unsqueeze(0))
35
+ perturbated_tensors = torch.cat(perturbated_tensors)
36
+
37
+ with torch.no_grad():
38
+ outputs_after_imputation = model(perturbated_tensors)
39
+ scores_after_imputation = [
40
+ target(output).cpu().numpy() for target, output in zip(
41
+ targets, outputs_after_imputation)]
42
+ scores_after_imputation = np.float32(scores_after_imputation)
43
+
44
+ if return_diff:
45
+ result = scores_after_imputation - scores
46
+ else:
47
+ result = scores_after_imputation
48
+
49
+ if return_visualization:
50
+ return result, perturbated_tensors
51
+ else:
52
+ return result
53
+
54
+
55
+ class RemoveMostRelevantFirst:
56
+ def __init__(self, percentile, imputer):
57
+ self.percentile = percentile
58
+ self.imputer = imputer
59
+
60
+ def __call__(self, input_tensor, mask):
61
+ imputer = self.imputer
62
+ if self.percentile != 'auto':
63
+ threshold = np.percentile(mask.cpu().numpy(), self.percentile)
64
+ binary_mask = np.float32(mask < threshold)
65
+ else:
66
+ _, binary_mask = cv2.threshold(
67
+ np.uint8(mask * 255), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
68
+
69
+ binary_mask = torch.from_numpy(binary_mask)
70
+ binary_mask = binary_mask.to(mask.device)
71
+ return imputer(input_tensor, binary_mask)
72
+
73
+
74
+ class RemoveLeastRelevantFirst(RemoveMostRelevantFirst):
75
+ def __init__(self, percentile, imputer):
76
+ super(RemoveLeastRelevantFirst, self).__init__(percentile, imputer)
77
+
78
+ def __call__(self, input_tensor, mask):
79
+ return super(RemoveLeastRelevantFirst, self).__call__(
80
+ input_tensor, 1 - mask)
81
+
82
+
83
+ class AveragerAcrossThresholds:
84
+ def __init__(
85
+ self,
86
+ imputer,
87
+ percentiles=[
88
+ 10,
89
+ 20,
90
+ 30,
91
+ 40,
92
+ 50,
93
+ 60,
94
+ 70,
95
+ 80,
96
+ 90]):
97
+ self.imputer = imputer
98
+ self.percentiles = percentiles
99
+
100
+ def __call__(self,
101
+ input_tensor: torch.Tensor,
102
+ cams: np.ndarray,
103
+ targets: List[Callable],
104
+ model: torch.nn.Module):
105
+ scores = []
106
+ for percentile in self.percentiles:
107
+ imputer = self.imputer(percentile)
108
+ scores.append(imputer(input_tensor, cams, targets, model))
109
+ return np.mean(np.float32(scores), axis=0)
src/custom_code/custom_grad_cam/metrics/road.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A Consistent and Efficient Evaluation Strategy for Attribution Methods
2
+ # https://arxiv.org/abs/2202.00449
3
+ # Taken from https://raw.githubusercontent.com/tleemann/road_evaluation/main/imputations.py
4
+ # MIT License
5
+
6
+ # Copyright (c) 2022 Tobias Leemann
7
+
8
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
9
+ # of this software and associated documentation files (the "Software"), to deal
10
+ # in the Software without restriction, including without limitation the rights
11
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
+ # copies of the Software, and to permit persons to whom the Software is
13
+ # furnished to do so, subject to the following conditions:
14
+
15
+ # The above copyright notice and this permission notice shall be included in all
16
+ # copies or substantial portions of the Software.
17
+
18
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24
+ # SOFTWARE.
25
+
26
+
27
+ # Implementations of our imputation models.
28
+ import torch
29
+ import numpy as np
30
+ from scipy.sparse import lil_matrix, csc_matrix
31
+ from scipy.sparse.linalg import spsolve
32
+ from typing import List, Callable
33
+ from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric, \
34
+ AveragerAcrossThresholds, \
35
+ RemoveMostRelevantFirst, \
36
+ RemoveLeastRelevantFirst
37
+
38
+ # The weights of the surrounding pixels
39
+ neighbors_weights = [((1, 1), 1 / 12),
40
+ ((0, 1), 1 / 6),
41
+ ((-1, 1), 1 / 12),
42
+ ((1, -1), 1 / 12),
43
+ ((0, -1), 1 / 6),
44
+ ((-1, -1), 1 / 12),
45
+ ((1, 0), 1 / 6),
46
+ ((-1, 0), 1 / 6)]
47
+
48
+
49
+ class NoisyLinearImputer:
50
+ def __init__(self,
51
+ noise: float = 0.01,
52
+ weighting: List[float] = neighbors_weights):
53
+ """
54
+ Noisy linear imputation.
55
+ noise: magnitude of noise to add (absolute, set to 0 for no noise)
56
+ weighting: Weights of the neighboring pixels in the computation.
57
+ List of tuples of (offset, weight)
58
+ """
59
+ self.noise = noise
60
+ self.weighting = neighbors_weights
61
+
62
+ @staticmethod
63
+ def add_offset_to_indices(indices, offset, mask_shape):
64
+ """ Add the corresponding offset to the indices.
65
+ Return new indices plus a valid bit-vector. """
66
+ cord1 = indices % mask_shape[1]
67
+ cord0 = indices // mask_shape[1]
68
+ cord0 += offset[0]
69
+ cord1 += offset[1]
70
+ valid = ((cord0 < 0) | (cord1 < 0) |
71
+ (cord0 >= mask_shape[0]) |
72
+ (cord1 >= mask_shape[1]))
73
+ return ~valid, indices + offset[0] * mask_shape[1] + offset[1]
74
+
75
+ @staticmethod
76
+ def setup_sparse_system(mask, img, neighbors_weights):
77
+ """ Vectorized version to set up the equation system.
78
+ mask: (H, W)-tensor of missing pixels.
79
+ Image: (H, W, C)-tensor of all values.
80
+ Return (N,N)-System matrix, (N,C)-Right hand side for each of the C channels.
81
+ """
82
+ maskflt = mask.flatten()
83
+ imgflat = img.reshape((img.shape[0], -1))
84
+ # Indices that are imputed in the flattened mask:
85
+ indices = np.argwhere(maskflt == 0).flatten()
86
+ coords_to_vidx = np.zeros(len(maskflt), dtype=int)
87
+ coords_to_vidx[indices] = np.arange(len(indices))
88
+ numEquations = len(indices)
89
+ # System matrix:
90
+ A = lil_matrix((numEquations, numEquations))
91
+ b = np.zeros((numEquations, img.shape[0]))
92
+ # Sum of weights assigned:
93
+ sum_neighbors = np.ones(numEquations)
94
+ for n in neighbors_weights:
95
+ offset, weight = n[0], n[1]
96
+ # Take out outliers
97
+ valid, new_coords = NoisyLinearImputer.add_offset_to_indices(
98
+ indices, offset, mask.shape)
99
+ valid_coords = new_coords[valid]
100
+ valid_ids = np.argwhere(valid == 1).flatten()
101
+ # Add values to the right hand-side
102
+ has_values_coords = valid_coords[maskflt[valid_coords] > 0.5]
103
+ has_values_ids = valid_ids[maskflt[valid_coords] > 0.5]
104
+ b[has_values_ids, :] -= weight * imgflat[:, has_values_coords].T
105
+ # Add weights to the system (left hand side)
106
+ # Find coordinates in the system.
107
+ has_no_values = valid_coords[maskflt[valid_coords] < 0.5]
108
+ variable_ids = coords_to_vidx[has_no_values]
109
+ has_no_values_ids = valid_ids[maskflt[valid_coords] < 0.5]
110
+ A[has_no_values_ids, variable_ids] = weight
111
+ # Reduce weight for invalid
112
+ sum_neighbors[np.argwhere(valid == 0).flatten()] = \
113
+ sum_neighbors[np.argwhere(valid == 0).flatten()] - weight
114
+
115
+ A[np.arange(numEquations), np.arange(numEquations)] = -sum_neighbors
116
+ return A, b
117
+
118
+ def __call__(self, img: torch.Tensor, mask: torch.Tensor):
119
+ """ Our linear inputation scheme. """
120
+ """
121
+ This is the function to do the linear infilling
122
+ img: original image (C,H,W)-tensor;
123
+ mask: mask; (H,W)-tensor
124
+
125
+ """
126
+ imgflt = img.reshape(img.shape[0], -1)
127
+ maskflt = mask.reshape(-1)
128
+ # Indices that need to be imputed.
129
+ indices_linear = np.argwhere(maskflt == 0).flatten()
130
+ # Set up sparse equation system, solve system.
131
+ A, b = NoisyLinearImputer.setup_sparse_system(
132
+ mask.numpy(), img.numpy(), neighbors_weights)
133
+ res = torch.tensor(spsolve(csc_matrix(A), b), dtype=torch.float)
134
+
135
+ # Fill the values with the solution of the system.
136
+ img_infill = imgflt.clone()
137
+ img_infill[:, indices_linear] = res.t() + self.noise * \
138
+ torch.randn_like(res.t())
139
+
140
+ return img_infill.reshape_as(img)
141
+
142
+
143
+ class ROADMostRelevantFirst(PerturbationConfidenceMetric):
144
+ def __init__(self, percentile=80):
145
+ super(ROADMostRelevantFirst, self).__init__(
146
+ RemoveMostRelevantFirst(percentile, NoisyLinearImputer()))
147
+
148
+
149
+ class ROADLeastRelevantFirst(PerturbationConfidenceMetric):
150
+ def __init__(self, percentile=20):
151
+ super(ROADLeastRelevantFirst, self).__init__(
152
+ RemoveLeastRelevantFirst(percentile, NoisyLinearImputer()))
153
+
154
+
155
+ class ROADMostRelevantFirstAverage(AveragerAcrossThresholds):
156
+ def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
157
+ super(ROADMostRelevantFirstAverage, self).__init__(
158
+ ROADMostRelevantFirst, percentiles)
159
+
160
+
161
+ class ROADLeastRelevantFirstAverage(AveragerAcrossThresholds):
162
+ def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
163
+ super(ROADLeastRelevantFirstAverage, self).__init__(
164
+ ROADLeastRelevantFirst, percentiles)
165
+
166
+
167
+ class ROADCombined:
168
+ def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
169
+ self.percentiles = percentiles
170
+ self.morf_averager = ROADMostRelevantFirstAverage(percentiles)
171
+ self.lerf_averager = ROADLeastRelevantFirstAverage(percentiles)
172
+
173
+ def __call__(self,
174
+ input_tensor: torch.Tensor,
175
+ cams: np.ndarray,
176
+ targets: List[Callable],
177
+ model: torch.nn.Module):
178
+
179
+ scores_lerf = self.lerf_averager(input_tensor, cams, targets, model)
180
+ scores_morf = self.morf_averager(input_tensor, cams, targets, model)
181
+ return (scores_lerf - scores_morf) / 2
src/custom_code/custom_grad_cam/random_cam.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+
5
+ class RandomCAM(BaseCAM):
6
+ def __init__(self, model, target_layers, use_cuda=False,
7
+ reshape_transform=None):
8
+ super(
9
+ RandomCAM,
10
+ self).__init__(
11
+ model,
12
+ target_layers,
13
+ use_cuda,
14
+ reshape_transform)
15
+
16
+ def get_cam_weights(self,
17
+ input_tensor,
18
+ target_layer,
19
+ target_category,
20
+ activations,
21
+ grads):
22
+ return np.random.uniform(-1, 1, size=(grads.shape[0], grads.shape[1]))
src/custom_code/custom_grad_cam/score_cam.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import tqdm
3
+ from pytorch_grad_cam.base_cam import BaseCAM
4
+
5
+
6
+ class ScoreCAM(BaseCAM):
7
+ def __init__(
8
+ self,
9
+ model,
10
+ target_layers,
11
+ use_cuda=False,
12
+ reshape_transform=None):
13
+ super(ScoreCAM, self).__init__(model,
14
+ target_layers,
15
+ use_cuda,
16
+ reshape_transform=reshape_transform,
17
+ uses_gradients=False)
18
+
19
+ def get_cam_weights(self,
20
+ input_tensor,
21
+ target_layer,
22
+ targets,
23
+ activations,
24
+ grads):
25
+ with torch.no_grad():
26
+ upsample = torch.nn.UpsamplingBilinear2d(
27
+ size=input_tensor.shape[-2:])
28
+ activation_tensor = torch.from_numpy(activations)
29
+ if self.cuda:
30
+ activation_tensor = activation_tensor.cuda()
31
+
32
+ upsampled = upsample(activation_tensor)
33
+
34
+ maxs = upsampled.view(upsampled.size(0),
35
+ upsampled.size(1), -1).max(dim=-1)[0]
36
+ mins = upsampled.view(upsampled.size(0),
37
+ upsampled.size(1), -1).min(dim=-1)[0]
38
+
39
+ maxs, mins = maxs[:, :, None, None], mins[:, :, None, None]
40
+ upsampled = (upsampled - mins) / (maxs - mins)
41
+
42
+ input_tensors = input_tensor[:, None,
43
+ :, :] * upsampled[:, :, None, :, :]
44
+
45
+ if hasattr(self, "batch_size"):
46
+ BATCH_SIZE = self.batch_size
47
+ else:
48
+ BATCH_SIZE = 16
49
+
50
+ scores = []
51
+ for target, tensor in zip(targets, input_tensors):
52
+ for i in tqdm.tqdm(range(0, tensor.size(0), BATCH_SIZE)):
53
+ batch = tensor[i: i + BATCH_SIZE, :]
54
+ outputs = [target(o).cpu().item()
55
+ for o in self.model(batch)]
56
+ scores.extend(outputs)
57
+ scores = torch.Tensor(scores)
58
+ scores = scores.view(activations.shape[0], activations.shape[1])
59
+ weights = torch.nn.Softmax(dim=-1)(scores).numpy()
60
+ return weights
src/custom_code/custom_grad_cam/sobel_cam.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+
4
+ def sobel_cam(img):
5
+ gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
6
+ grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
7
+ grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
8
+ abs_grad_x = cv2.convertScaleAbs(grad_x)
9
+ abs_grad_y = cv2.convertScaleAbs(grad_y)
10
+ grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
11
+ return grad
src/custom_code/custom_grad_cam/utils/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from pytorch_grad_cam.utils.image import deprocess_image
2
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
3
+ from pytorch_grad_cam.utils import model_targets
4
+ from pytorch_grad_cam.utils import reshape_transforms
src/custom_code/custom_grad_cam/utils/find_layers.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def replace_layer_recursive(model, old_layer, new_layer):
2
+ for name, layer in model._modules.items():
3
+ if layer == old_layer:
4
+ model._modules[name] = new_layer
5
+ return True
6
+ elif replace_layer_recursive(layer, old_layer, new_layer):
7
+ return True
8
+ return False
9
+
10
+
11
+ def replace_all_layer_type_recursive(model, old_layer_type, new_layer):
12
+ for name, layer in model._modules.items():
13
+ if isinstance(layer, old_layer_type):
14
+ model._modules[name] = new_layer
15
+ replace_all_layer_type_recursive(layer, old_layer_type, new_layer)
16
+
17
+
18
+ def find_layer_types_recursive(model, layer_types):
19
+ def predicate(layer):
20
+ return type(layer) in layer_types
21
+ return find_layer_predicate_recursive(model, predicate)
22
+
23
+
24
+ def find_layer_predicate_recursive(model, predicate):
25
+ result = []
26
+ for name, layer in model._modules.items():
27
+ if predicate(layer):
28
+ result.append(layer)
29
+ result.extend(find_layer_predicate_recursive(layer, predicate))
30
+ return result
src/custom_code/custom_grad_cam/utils/image.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib
2
+ from matplotlib import pyplot as plt
3
+ from matplotlib.lines import Line2D
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ from torchvision.transforms import Compose, Normalize, ToTensor
8
+ from typing import List, Dict
9
+ import math
10
+
11
+
12
+ def preprocess_image(
13
+ img: np.ndarray, mean=[
14
+ 0.5, 0.5, 0.5], std=[
15
+ 0.5, 0.5, 0.5]) -> torch.Tensor:
16
+ preprocessing = Compose([
17
+ ToTensor(),
18
+ Normalize(mean=mean, std=std)
19
+ ])
20
+ return preprocessing(img.copy()).unsqueeze(0)
21
+
22
+
23
+ def deprocess_image(img):
24
+ """ see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """
25
+ img = img - np.mean(img)
26
+ img = img / (np.std(img) + 1e-5)
27
+ img = img * 0.1
28
+ img = img + 0.5
29
+ img = np.clip(img, 0, 1)
30
+ return np.uint8(img * 255)
31
+
32
+
33
+ def show_cam_on_image(img: np.ndarray,
34
+ mask: np.ndarray,
35
+ use_rgb: bool = False,
36
+ colormap: int = cv2.COLORMAP_JET,
37
+ image_weight: float = 0.5) -> np.ndarray:
38
+ """ This function overlays the cam mask on the image as an heatmap.
39
+ By default the heatmap is in BGR format.
40
+
41
+ :param img: The base image in RGB or BGR format.
42
+ :param mask: The cam mask.
43
+ :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
44
+ :param colormap: The OpenCV colormap to be used.
45
+ :param image_weight: The final result is image_weight * img + (1-image_weight) * mask.
46
+ :returns: The default image with the cam overlay.
47
+ """
48
+ heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
49
+ if use_rgb:
50
+ heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
51
+ heatmap = np.float32(heatmap) / 255
52
+
53
+ if np.max(img) > 1:
54
+ raise Exception(
55
+ "The input image should np.float32 in the range [0, 1]")
56
+
57
+ if image_weight < 0 or image_weight > 1:
58
+ raise Exception(
59
+ f"image_weight should be in the range [0, 1].\
60
+ Got: {image_weight}")
61
+
62
+ cam = (1 - image_weight) * heatmap + image_weight * img
63
+ cam = cam / np.max(cam)
64
+ return np.uint8(255 * cam)
65
+
66
+
67
+ def create_labels_legend(concept_scores: np.ndarray,
68
+ labels: Dict[int, str],
69
+ top_k=2):
70
+ concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
71
+ concept_labels_topk = []
72
+ for concept_index in range(concept_categories.shape[0]):
73
+ categories = concept_categories[concept_index, :]
74
+ concept_labels = []
75
+ for category in categories:
76
+ score = concept_scores[concept_index, category]
77
+ label = f"{','.join(labels[category].split(',')[:3])}:{score:.2f}"
78
+ concept_labels.append(label)
79
+ concept_labels_topk.append("\n".join(concept_labels))
80
+ return concept_labels_topk
81
+
82
+
83
+ def show_factorization_on_image(img: np.ndarray,
84
+ explanations: np.ndarray,
85
+ colors: List[np.ndarray] = None,
86
+ image_weight: float = 0.5,
87
+ concept_labels: List = None) -> np.ndarray:
88
+ """ Color code the different component heatmaps on top of the image.
89
+ Every component color code will be magnified according to the heatmap itensity
90
+ (by modifying the V channel in the HSV color space),
91
+ and optionally create a lagend that shows the labels.
92
+
93
+ Since different factorization component heatmaps can overlap in principle,
94
+ we need a strategy to decide how to deal with the overlaps.
95
+ This keeps the component that has a higher value in it's heatmap.
96
+
97
+ :param img: The base image RGB format.
98
+ :param explanations: A tensor of shape num_componetns x height x width, with the component visualizations.
99
+ :param colors: List of R, G, B colors to be used for the components.
100
+ If None, will use the gist_rainbow cmap as a default.
101
+ :param image_weight: The final result is image_weight * img + (1-image_weight) * visualization.
102
+ :concept_labels: A list of strings for every component. If this is paseed, a legend that shows
103
+ the labels and their colors will be added to the image.
104
+ :returns: The visualized image.
105
+ """
106
+ n_components = explanations.shape[0]
107
+ if colors is None:
108
+ # taken from https://github.com/edocollins/DFF/blob/master/utils.py
109
+ _cmap = plt.cm.get_cmap('gist_rainbow')
110
+ colors = [
111
+ np.array(
112
+ _cmap(i)) for i in np.arange(
113
+ 0,
114
+ 1,
115
+ 1.0 /
116
+ n_components)]
117
+ concept_per_pixel = explanations.argmax(axis=0)
118
+ masks = []
119
+ for i in range(n_components):
120
+ mask = np.zeros(shape=(img.shape[0], img.shape[1], 3))
121
+ mask[:, :, :] = colors[i][:3]
122
+ explanation = explanations[i]
123
+ explanation[concept_per_pixel != i] = 0
124
+ mask = np.uint8(mask * 255)
125
+ mask = cv2.cvtColor(mask, cv2.COLOR_RGB2HSV)
126
+ mask[:, :, 2] = np.uint8(255 * explanation)
127
+ mask = cv2.cvtColor(mask, cv2.COLOR_HSV2RGB)
128
+ mask = np.float32(mask) / 255
129
+ masks.append(mask)
130
+
131
+ mask = np.sum(np.float32(masks), axis=0)
132
+ result = img * image_weight + mask * (1 - image_weight)
133
+ result = np.uint8(result * 255)
134
+
135
+ if concept_labels is not None:
136
+ px = 1 / plt.rcParams['figure.dpi'] # pixel in inches
137
+ fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px))
138
+ plt.rcParams['legend.fontsize'] = int(
139
+ 14 * result.shape[0] / 256 / max(1, n_components / 6))
140
+ lw = 5 * result.shape[0] / 256
141
+ lines = [Line2D([0], [0], color=colors[i], lw=lw)
142
+ for i in range(n_components)]
143
+ plt.legend(lines,
144
+ concept_labels,
145
+ mode="expand",
146
+ fancybox=True,
147
+ shadow=True)
148
+
149
+ plt.tight_layout(pad=0, w_pad=0, h_pad=0)
150
+ plt.axis('off')
151
+ fig.canvas.draw()
152
+ data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
153
+ plt.close(fig=fig)
154
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
155
+ data = cv2.resize(data, (result.shape[1], result.shape[0]))
156
+ result = np.hstack((result, data))
157
+ return result
158
+
159
+
160
+ def scale_cam_image(cam, target_size=None):
161
+ result = []
162
+ for img in cam:
163
+ img = img - np.min(img)
164
+ img = img / (1e-7 + np.max(img))
165
+ if target_size is not None:
166
+ img = cv2.resize(img, target_size)
167
+ result.append(img)
168
+ result = np.float32(result)
169
+
170
+ return result
171
+
172
+
173
+ def scale_accross_batch_and_channels(tensor, target_size):
174
+ batch_size, channel_size = tensor.shape[:2]
175
+ reshaped_tensor = tensor.reshape(
176
+ batch_size * channel_size, *tensor.shape[2:])
177
+ result = scale_cam_image(reshaped_tensor, target_size)
178
+ result = result.reshape(
179
+ batch_size,
180
+ channel_size,
181
+ target_size[1],
182
+ target_size[0])
183
+ return result
src/custom_code/custom_grad_cam/utils/model_targets.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision
4
+
5
+
6
+ class ClassifierOutputTarget:
7
+ def __init__(self, category):
8
+ self.category = category
9
+
10
+ def __call__(self, model_output):
11
+ if len(model_output.shape) == 1:
12
+ return model_output[self.category]
13
+ return model_output[:, self.category]
14
+
15
+
16
+ class ClassifierOutputSoftmaxTarget:
17
+ def __init__(self, category):
18
+ self.category = category
19
+
20
+ def __call__(self, model_output):
21
+ if len(model_output.shape) == 1:
22
+ return torch.softmax(model_output, dim=-1)[self.category]
23
+ return torch.softmax(model_output, dim=-1)[:, self.category]
24
+
25
+
26
+ class BinaryClassifierOutputTarget:
27
+ def __init__(self, category):
28
+ self.category = category
29
+
30
+ def __call__(self, model_output):
31
+ if self.category == 1:
32
+ sign = 1
33
+ else:
34
+ sign = -1
35
+ return torch.abs(model_output) * sign
36
+
37
+
38
+ class SoftmaxOutputTarget:
39
+ def __init__(self):
40
+ pass
41
+
42
+ def __call__(self, model_output):
43
+ return torch.softmax(model_output, dim=-1)
44
+
45
+
46
+ class RawScoresOutputTarget:
47
+ def __init__(self):
48
+ pass
49
+
50
+ def __call__(self, model_output):
51
+ return model_output
52
+
53
+
54
+ class SemanticSegmentationTarget:
55
+ """ Gets a binary spatial mask and a category,
56
+ And return the sum of the category scores,
57
+ of the pixels in the mask. """
58
+
59
+ def __init__(self, category, mask):
60
+ self.category = category
61
+ self.mask = torch.from_numpy(mask)
62
+ if torch.cuda.is_available():
63
+ self.mask = self.mask.cuda()
64
+
65
+ def __call__(self, model_output):
66
+ return (model_output[self.category, :, :] * self.mask).sum()
67
+
68
+
69
+ class FasterRCNNBoxScoreTarget:
70
+ """ For every original detected bounding box specified in "bounding boxes",
71
+ assign a score on how the current bounding boxes match it,
72
+ 1. In IOU
73
+ 2. In the classification score.
74
+ If there is not a large enough overlap, or the category changed,
75
+ assign a score of 0.
76
+
77
+ The total score is the sum of all the box scores.
78
+ """
79
+
80
+ def __init__(self, labels, bounding_boxes, iou_threshold=0.5):
81
+ self.labels = labels
82
+ self.bounding_boxes = bounding_boxes
83
+ self.iou_threshold = iou_threshold
84
+
85
+ def __call__(self, model_outputs):
86
+ output = torch.Tensor([0])
87
+ if torch.cuda.is_available():
88
+ output = output.cuda()
89
+
90
+ if len(model_outputs["boxes"]) == 0:
91
+ return output
92
+
93
+ for box, label in zip(self.bounding_boxes, self.labels):
94
+ box = torch.Tensor(box[None, :])
95
+ if torch.cuda.is_available():
96
+ box = box.cuda()
97
+
98
+ ious = torchvision.ops.box_iou(box, model_outputs["boxes"])
99
+ index = ious.argmax()
100
+ if ious[0, index] > self.iou_threshold and model_outputs["labels"][index] == label:
101
+ score = ious[0, index] + model_outputs["scores"][index]
102
+ output = output + score
103
+ return output
src/custom_code/custom_grad_cam/utils/reshape_transforms.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def fasterrcnn_reshape_transform(x):
5
+ target_size = x['pool'].size()[-2:]
6
+ activations = []
7
+ for key, value in x.items():
8
+ activations.append(
9
+ torch.nn.functional.interpolate(
10
+ torch.abs(value),
11
+ target_size,
12
+ mode='bilinear'))
13
+ activations = torch.cat(activations, axis=1)
14
+ return activations
15
+
16
+
17
+ def swinT_reshape_transform(tensor, height=7, width=7):
18
+ result = tensor.reshape(tensor.size(0),
19
+ height, width, tensor.size(2))
20
+
21
+ # Bring the channels to the first dimension,
22
+ # like in CNNs.
23
+ result = result.transpose(2, 3).transpose(1, 2)
24
+ return result
25
+
26
+
27
+ def vit_reshape_transform(tensor, height=14, width=14):
28
+ result = tensor[:, 1:, :].reshape(tensor.size(0),
29
+ height, width, tensor.size(2))
30
+
31
+ # Bring the channels to the first dimension,
32
+ # like in CNNs.
33
+ result = result.transpose(2, 3).transpose(1, 2)
34
+ return result
src/custom_code/custom_grad_cam/utils/svd_on_activations.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def get_2d_projection(activation_batch):
5
+ # TBD: use pytorch batch svd implementation
6
+ activation_batch[np.isnan(activation_batch)] = 0
7
+ projections = []
8
+ for activations in activation_batch:
9
+ reshaped_activations = (activations).reshape(
10
+ activations.shape[0], -1).transpose()
11
+ # Centering before the SVD seems to be important here,
12
+ # Otherwise the image returned is negative
13
+ reshaped_activations = reshaped_activations - \
14
+ reshaped_activations.mean(axis=0)
15
+ U, S, VT = np.linalg.svd(reshaped_activations, full_matrices=True)
16
+ projection = reshaped_activations @ VT[0, :]
17
+ projection = projection.reshape(activations.shape[1:])
18
+ projections.append(projection)
19
+ return np.float32(projections)
src/custom_code/custom_grad_cam/xgrad_cam.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+
5
+ class XGradCAM(BaseCAM):
6
+ def __init__(
7
+ self,
8
+ model,
9
+ target_layers,
10
+ use_cuda=False,
11
+ reshape_transform=None):
12
+ super(
13
+ XGradCAM,
14
+ self).__init__(
15
+ model,
16
+ target_layers,
17
+ use_cuda,
18
+ reshape_transform)
19
+
20
+ def get_cam_weights(self,
21
+ input_tensor,
22
+ target_layer,
23
+ target_category,
24
+ activations,
25
+ grads):
26
+ sum_activations = np.sum(activations, axis=(2, 3))
27
+ eps = 1e-7
28
+ weights = grads * activations / \
29
+ (sum_activations[:, :, None, None] + eps)
30
+ weights = weights.sum(axis=(2, 3))
31
+ return weights