import gradio as gr from datetime import datetime import pytz import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import pandas as pd from tqdm import tqdm from collections import defaultdict import os from PIL import Image import shutil import copy import numpy as np import matplotlib.pyplot as plt from util import transform, train_transform, AnimalDataset from Nets import CustomResNet18 from deep_translator import GoogleTranslator from torchcam.methods import SmoothGradCAMpp, XGradCAM, ScoreCAM, GradCAM, GradCAMpp, CAM import matplotlib.pyplot as plt from torchcam.utils import overlay_mask from torchvision.transforms.functional import to_pil_image from sklearn.preprocessing import LabelEncoder from functools import lru_cache IMAGE_PATH = 'src/examples' RANDOM_IMAGES_TO_SHOW = 20 IMAGES_PER_ROW = 5 CAM_METHODS = { "GradCAM": GradCAM, "GradCAM++": GradCAMpp, "XGradCAM": XGradCAM, "SmoothGradCAM++": SmoothGradCAMpp, } model = CustomResNet18(90).eval() model.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu'))) cam_model = copy.deepcopy(model) data_df = pd.read_csv('src/cache/val_df.csv') def load_random_images(): random_images = list() for i in range(RANDOM_IMAGES_TO_SHOW): idx = np.random.randint(0, len(data_df)) p = os.path.join(IMAGE_PATH, data_df.iloc[idx]['path']) animal = data_df.iloc[idx]['target'] random_images.append((animal, Image.open(p))) return random_images def get_class_name(idx): return data_df[data_df['encoded_target'] == idx]['target'].values[0] @lru_cache(maxsize=100) def get_translated(to_translate): return GoogleTranslator(source="en", target="de").translate(to_translate) for idx in tqdm(range(90), desc="Translate animals"): get_translated(get_class_name(idx)) def infer_image(image): image = transform(image) image = image.unsqueeze(0) with torch.no_grad(): output = model(image) distribution = torch.nn.functional.softmax(output, dim=1) ret = defaultdict(float) for idx, prob in enumerate(distribution[0]): animal = f'{get_class_name(idx)} ({get_translated(get_class_name(idx))})' ret[animal] = prob.item() return ret def gradcam(image, alpha, cam_method, layer): if layer == 'layer1': layers = [model.resnet.layer1] elif layer == 'layer2': layers = [model.resnet.layer2] elif layer == 'layer3': layers = [model.resnet.layer3] elif layer == 'layer4': layers = [model.resnet.layer4] else: layers = [model.resnet.layer1, model.resnet.layer2, model.resnet.layer3, model.resnet.layer4] model.eval() img_tensor = transform(image).unsqueeze(0) cam = CAM_METHODS[cam_method](model, target_layer=layers) output = model(img_tensor) activation_map = cam(output.squeeze(0).argmax().item(), output) result = overlay_mask(image, to_pil_image(activation_map[0].squeeze(0), mode='F'), alpha=alpha) cam.remove_hooks() # height maximal 300px if result.size[1] > 300: ratio = 300 / result.size[1] result = result.resize((int(result.size[0] * ratio), 300)) return result with gr.Blocks() as demo: with open('src/header.md', 'r') as f: markdown_string = f.read() header = gr.Markdown(markdown_string) with gr.Row(variant="panel", equal_height=True): user_image = gr.Image( type="pil", label="Upload Your Own Image", info="You can also upload your own image for prediction.", scale=1, ) with gr.Tab("Predict"): with gr.Column(): output = gr.Label( num_top_classes=3, label="Output", info="Top three predicted classes and their confidences.", scale=5, ) predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=1) predict_mode_button.click(fn=infer_image, inputs=[user_image], outputs=output, queue=True) with gr.Tab("Explain"): with gr.Row(): with gr.Column(): cam_method = gr.Radio( list(CAM_METHODS.keys()), label="GradCAM Method", value="GradCAM", interactive=True, scale=2, ) cam_method.description = "Here you can choose the GradCAM method." cam_method.description_place = "left" alpha = gr.Slider( minimum=.1, maximum=.9, value=0.5, interactive=True, step=.1, label="Alpha", scale=1, ) alpha.description = "Here you can choose the alpha value." alpha.description_place = "left" layer = gr.Radio( ["layer1", "layer2", "layer3", "layer4", "all"], label="Layer", value="layer4", interactive=True, scale=2, ) layer.description = "Here you can choose the layer to visualize." layer.description_place = "left" with gr.Column(): output_cam = gr.Image( type="pil", label="GradCAM", info="GradCAM visualization" ) gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1) gradcam_mode_button.click(fn=gradcam, inputs=[user_image, alpha, cam_method, layer], outputs=output_cam, queue=True) with gr.Tab("Example Images"): with gr.Column(): placeholder = gr.Markdown("## Example Images") showed_images = list() loaded_images = load_random_images() amount_rows = max(1, (len(loaded_images) // IMAGES_PER_ROW)) for i in range(amount_rows): with gr.Row(): for j in range(IMAGES_PER_ROW): animal, image = loaded_images[i * IMAGES_PER_ROW + j] showed_images.append(gr.Image( value=image, label=animal, type="pil", interactive=False, )) if __name__ == "__main__": demo.queue() demo.launch()