import torchvision.transforms as transforms from torch.utils.data import DataLoader, Dataset from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from PIL import Image import torch class AnimalDataset(Dataset): def __init__(self, df, transform=None): self.paths = df["path"].values self.targets = df["target"].values self.encoded_target = df['encoded_target'].values self.transform = transform self.images = [] for path in tqdm(self.paths): self.images.append(Image.open(path).convert("RGB").resize((224, 224))) def __len__(self): return len(self.paths) def __getitem__(self, idx): img = self.images[idx] if self.transform: img = self.transform(img) target = self.targets[idx] encoded_target = torch.tensor(self.encoded_target[idx]).type(torch.LongTensor) return img, encoded_target, target train_transform = transforms.Compose([ transforms.Resize((224,224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Define the transformation pipeline transform = transforms.Compose([ transforms.Resize((224,224)), transforms.ToTensor(), # Convert the images to PyTorch tensors transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])