Add multiple improvements
Browse files- src/app.py +16 -22
- src/utils.py +2 -0
src/app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
from utils import load_specific_model, inference
|
3 |
-
import markdown
|
4 |
|
5 |
-
current_model = None # Initialize the current model as None
|
|
|
6 |
|
7 |
# Define a set of example images
|
8 |
example_images = [
|
@@ -13,23 +13,17 @@ example_images = [
|
|
13 |
("Beispielbild Wertstoff", "src/examples/Wertstoff.jpg")
|
14 |
]
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
if model_name is None:
|
19 |
raise gr.Error("No model selected!")
|
20 |
-
if
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
print(f"\nPredicting with {current_model}\n")
|
29 |
-
if current_model is None:
|
30 |
-
raise gr.Error("No model loaded!")
|
31 |
-
|
32 |
-
confidences = inference(current_model, inp)
|
33 |
print(f"\nConfidences: {confidences}\n")
|
34 |
return confidences
|
35 |
|
@@ -57,15 +51,15 @@ with gr.Blocks() as demo:
|
|
57 |
)
|
58 |
|
59 |
model_dropdown = gr.Dropdown(
|
60 |
-
|
|
|
61 |
label="Model",
|
62 |
info="Select a model to use.",
|
63 |
scale=1,
|
64 |
)
|
65 |
-
model_dropdown.change(load_model, model_dropdown, show_progress=True, queue=True)
|
66 |
|
67 |
-
predict_button = gr.Button(label="Predict", info="Click to make a prediction.", scale=1)
|
68 |
-
predict_button.click(fn=predict, inputs=user_image, outputs=output, queue=True)
|
69 |
|
70 |
gr.Markdown("## Example Images")
|
71 |
gr.Markdown("You can just drag and drop these images into the image uploader above!")
|
|
|
1 |
import gradio as gr
|
2 |
from utils import load_specific_model, inference
|
|
|
3 |
|
4 |
+
# current_model = None # Initialize the current model as None
|
5 |
+
MODEL_NAMES = ["EfficientNet-B3", "EfficientNet-B4", "vgg19", "resnet50", "dinov2_vits14"]
|
6 |
|
7 |
# Define a set of example images
|
8 |
example_images = [
|
|
|
13 |
("Beispielbild Wertstoff", "src/examples/Wertstoff.jpg")
|
14 |
]
|
15 |
|
16 |
+
def predict(inp_image, inp_dropdown):
|
17 |
+
if inp_dropdown is None:
|
|
|
18 |
raise gr.Error("No model selected!")
|
19 |
+
if inp_image is None:
|
20 |
+
raise gr.Error("No image uploaded!")
|
21 |
+
if inp_dropdown not in MODEL_NAMES:
|
22 |
+
raise gr.Error("Invalid model selected!")
|
23 |
+
|
24 |
+
print(f"\nInput: {inp_dropdown}\n")
|
25 |
+
current_model = load_specific_model(inp_dropdown)
|
26 |
+
confidences = inference(current_model, inp_image)
|
|
|
|
|
|
|
|
|
|
|
27 |
print(f"\nConfidences: {confidences}\n")
|
28 |
return confidences
|
29 |
|
|
|
51 |
)
|
52 |
|
53 |
model_dropdown = gr.Dropdown(
|
54 |
+
MODEL_NAMES,
|
55 |
+
value="EfficientNet-B3",
|
56 |
label="Model",
|
57 |
info="Select a model to use.",
|
58 |
scale=1,
|
59 |
)
|
|
|
60 |
|
61 |
+
predict_button = gr.Button(value="Predict", label="Predict", info="Click to make a prediction.", scale=1)
|
62 |
+
predict_button.click(fn=predict, inputs=[user_image, model_dropdown], outputs=output, queue=True)
|
63 |
|
64 |
gr.Markdown("## Example Images")
|
65 |
gr.Markdown("You can just drag and drop these images into the image uploader above!")
|
src/utils.py
CHANGED
@@ -3,6 +3,7 @@ from torchvision import models
|
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
import torch
|
5 |
from CustomModels import DinoVisionClassifier
|
|
|
6 |
|
7 |
classes = {0: 'Glas', 1: 'Organic', 2: 'Papier', 3: 'Restmüll', 4: 'Wertstoff'}
|
8 |
|
@@ -23,6 +24,7 @@ transform_dinov2 = transforms.Compose(
|
|
23 |
]
|
24 |
)
|
25 |
|
|
|
26 |
def load_specific_model(model_name):
|
27 |
current_model = None
|
28 |
if model_name == "EfficientNet-B3":
|
|
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
import torch
|
5 |
from CustomModels import DinoVisionClassifier
|
6 |
+
from functools import lru_cache
|
7 |
|
8 |
classes = {0: 'Glas', 1: 'Organic', 2: 'Papier', 3: 'Restmüll', 4: 'Wertstoff'}
|
9 |
|
|
|
24 |
]
|
25 |
)
|
26 |
|
27 |
+
@lru_cache
|
28 |
def load_specific_model(model_name):
|
29 |
current_model = None
|
30 |
if model_name == "EfficientNet-B3":
|