File size: 6,713 Bytes
3a1e48f
8340be4
8bc3178
0339fc3
0e80ee6
68b51dd
8ddce9c
0e80ee6
399fa48
41238f8
8340be4
3a1e48f
 
0e80ee6
 
 
3a1e48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d0ef7
 
481f4d5
3a1e48f
 
0e80ee6
3a1e48f
481f4d5
 
 
bb75d67
 
debbd96
0272460
41238f8
0e80ee6
41238f8
 
 
 
 
1287e5e
0e80ee6
 
 
41238f8
ad7df92
0272460
 
0e80ee6
1287e5e
0e80ee6
0272460
 
0e80ee6
 
1287e5e
0e80ee6
0272460
 
0e80ee6
872fe49
a550ff1
0272460
 
 
 
 
 
 
 
 
 
 
 
21f9f22
 
 
0272460
29b3293
f0bf100
0272460
 
 
 
 
 
 
 
 
 
0609de7
0272460
 
 
 
 
29b3293
c9d131d
0272460
269863d
0272460
 
 
 
 
 
 
 
 
 
269863d
d16ec03
269863d
00d0ef7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2

base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae
    # Removed feature_extractor and safety_checker
).to(device)

ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)

app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, progress=gr.Progress(track_tqdm=True)):
    faceid_all_embeds = []
    first_iteration = True
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)
        if(first_iteration and preserve_face_structure):
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
            first_iteration = False
            
    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
    
    if(not preserve_face_structure):
        print("Generating normal")
        image = ip_model.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, width=512, height=512, num_inference_steps=30
        )
    else:
        print("Generating plus")
        image = ip_model_plus.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=512, num_inference_steps=30
        )
    print(image)
    return image

def change_style(style):
    if style == "Photorealistic":
        return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0))
    else:
        return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8))

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# IP-Adapter-FaceID Plus demo")
    gr.Markdown("Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID) - Generate AI images with your own face - Non-commercial license")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                       info="Try something like 'a photo of a man/woman/person'",
                       placeholder="A photo of a [man/woman/person]...")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
            style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic")
            submit = gr.Button("Submit")
            with gr.Accordion(open=False, label="Advanced Options"):
                preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True)
                face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=10)
                likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
                nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through")    
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        style.change(fn=change_style,
                    inputs=style,
                    outputs=[preserve, face_strength, likeness_strength])
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts],
                    outputs=gallery)
    
    gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
    
demo.launch()