Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
from insightface.utils import face_align | |
import gradio as gr | |
import cv2 | |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") | |
device = "cuda" | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
vae=vae, | |
) | |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) | |
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) | |
def generate_image(images, prompt, negative_prompt, preserve_face_structure, progress=gr.Progress(track_tqdm=True)): | |
pipe.to(device) | |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
faceid_all_embeds = [] | |
first_iteration = True | |
for image in images: | |
face = cv2.imread(image) | |
faces = app.get(face) | |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
faceid_all_embeds.append(faceid_embed) | |
if(first_iteration): | |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face | |
first_iteration = False | |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
if(not preserve_face_structure): | |
image = ip_model.generate( | |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding, | |
width=512, height=512, num_inference_steps=30 | |
) | |
else: | |
image = ip_model_plus.generate( | |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding, | |
face_image=face_image, shortcut=True, s_scale=1.5, width=512, height=512, num_inference_steps=30 | |
) | |
print(image) | |
return image | |
css = ''' | |
h1{margin-bottom: 0 !important} | |
''' | |
demo = gr.Interface( | |
css=css, | |
fn=generate_image, | |
inputs=[ | |
gr.Files( | |
label="Drag 1 or more photos of your face", | |
file_types=["image"] | |
), | |
gr.Textbox(label="Prompt", | |
info="Try something like 'a photo of a man/woman/person'", | |
placeholder="A photo of a [man/woman/person]..."), | |
gr.Textbox(label="Negative Prompt", placeholder="low quality"), | |
gr.Checkbox(label="Preserve Face Structure", value=False), | |
], | |
outputs=[gr.Gallery(label="Generated Image")], | |
title="IP-Adapter-FaceID demo", | |
description="Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID)", | |
allow_flagging=False, | |
) | |
demo.launch() |