multimodalart's picture
Update app.py
0e80ee6
raw
history blame
3.62 kB
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
)
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, progress=gr.Progress(track_tqdm=True)):
pipe.to(device)
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
faceid_all_embeds = []
first_iteration = True
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
if(first_iteration):
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
first_iteration = False
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
if(not preserve_face_structure):
image = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
width=512, height=512, num_inference_steps=30
)
else:
image = ip_model_plus.generate(
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
face_image=face_image, shortcut=True, s_scale=1.5, width=512, height=512, num_inference_steps=30
)
print(image)
return image
css = '''
h1{margin-bottom: 0 !important}
'''
demo = gr.Interface(
css=css,
fn=generate_image,
inputs=[
gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
),
gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a [man/woman/person]..."),
gr.Textbox(label="Negative Prompt", placeholder="low quality"),
gr.Checkbox(label="Preserve Face Structure", value=False),
],
outputs=[gr.Gallery(label="Generated Image")],
title="IP-Adapter-FaceID demo",
description="Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID)",
allow_flagging=False,
)
demo.launch()