Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
import gradio as gr | |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
ip_ckpt = hf_hub_download(repo_id='h94/IP-Adapter-FaceID', filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
device = "cuda" | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
vae=vae, | |
#feature_extractor=None, | |
#safety_checker=None | |
) | |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) | |
def generate_image(image, prompt, negative_prompt): | |
pipe.to(device) | |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
faces = app.get(image) | |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
image = ip_model.generate( | |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, width=512, height=512, num_inference_steps=30 | |
) | |
print(image) | |
return image | |
demo = gr.Interface(fn=generate_image, inputs=[gr.Image(label="Your face"), gr.Textbox(label="Prompt"), gr.Textbox(label="Negative Prompt")], outputs=[gr.Gallery(label="Generated Image")]) | |
demo.launch() |