Spaces:
Paused
Paused
경량화 모델 및 기타 file commit
Browse files- .gitattributes +2 -0
- .ipynb_checkpoints/app-checkpoint.py +11 -5
- .ipynb_checkpoints/eval_and_inference-checkpoint.ipynb +279 -0
- .ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb +189 -0
- .ipynb_checkpoints/text_label-checkpoint.json +528 -0
- .ipynb_checkpoints/text_mapping_example-checkpoint.ipynb +90 -0
- app.py +10 -4
- eval_and_inference.ipynb +279 -0
- eval_and_inference_lite_v1.ipynb +189 -0
- model/gaepago-20-lite/.ipynb_checkpoints/config-checkpoint.json +131 -0
- model/gaepago-20-lite/config.json +131 -0
- model/gaepago-20-lite/model_quant_int8.pt +3 -0
- model/gaepago-20-lite/preprocessor_config.json +9 -0
- requirements.txt +18 -0
- text_label.json +528 -0
- text_mapping_example.ipynb +90 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model/gaepago-20-lite filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model/gaepago-20-lite/model_quant_int8.pt filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
from transformers import AutoModelForAudioClassification
|
5 |
from transformers import AutoFeatureExtractor
|
6 |
from transformers import pipeline
|
7 |
-
from datasets import Dataset
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
|
@@ -13,7 +13,10 @@ MODEL_NAME = "Gae8J/gaepago-20"
|
|
13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
14 |
|
15 |
# Import Model & feature extractor
|
16 |
-
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
17 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
18 |
|
19 |
# 모델 cpu로 변경하여 진행
|
@@ -27,9 +30,12 @@ def gaepago_fn(tmp_audio_dir):
|
|
27 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
28 |
,return_tensors="pt")
|
29 |
with torch.no_grad():
|
30 |
-
logits = model(**inputs).logits
|
|
|
|
|
|
|
31 |
predicted_class_ids = torch.argmax(logits).item()
|
32 |
-
predicted_label =
|
33 |
|
34 |
return predicted_label
|
35 |
|
@@ -47,4 +53,4 @@ with main_api:
|
|
47 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
48 |
# examples = gr.Examples(examples=example_list,
|
49 |
# inputs=[audio])
|
50 |
-
main_api.launch()
|
|
|
4 |
from transformers import AutoModelForAudioClassification
|
5 |
from transformers import AutoFeatureExtractor
|
6 |
from transformers import pipeline
|
7 |
+
from datasets import Dataset, Audio
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
|
|
|
13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
14 |
|
15 |
# Import Model & feature extractor
|
16 |
+
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
17 |
+
from transformers import AutoConfig
|
18 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
19 |
+
model = torch.jit.load(f"./model/gaepago-20-lite/model_quant_int8.pt")
|
20 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
21 |
|
22 |
# 모델 cpu로 변경하여 진행
|
|
|
30 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
31 |
,return_tensors="pt")
|
32 |
with torch.no_grad():
|
33 |
+
# logits = model(**inputs).logits
|
34 |
+
logits = model(**inputs)["logits"]
|
35 |
+
# predicted_class_ids = torch.argmax(logits).item()
|
36 |
+
# predicted_label = model.config.id2label[predicted_class_ids]
|
37 |
predicted_class_ids = torch.argmax(logits).item()
|
38 |
+
predicted_label = config.id2label[predicted_class_ids]
|
39 |
|
40 |
return predicted_label
|
41 |
|
|
|
53 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
54 |
# examples = gr.Examples(examples=example_list,
|
55 |
# inputs=[audio])
|
56 |
+
main_api.launch(share=True)
|
.ipynb_checkpoints/eval_and_inference-checkpoint.ipynb
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# example"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"MODEL_NAME = \"gaepago-20\"\n",
|
19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
25 |
+
"metadata": {},
|
26 |
+
"source": [
|
27 |
+
"## load dataset (test data)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "f078fd108d2044b48a961bee6ed49747",
|
47 |
+
"version_major": 2,
|
48 |
+
"version_minor": 0
|
49 |
+
},
|
50 |
+
"text/plain": [
|
51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"from datasets import load_dataset, Audio\n",
|
60 |
+
"\n",
|
61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
63 |
+
"test_data = dataset['test']\n",
|
64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "markdown",
|
69 |
+
"id": "d0c16b3d-32dd-4e61-86bd-e21232840e98",
|
70 |
+
"metadata": {},
|
71 |
+
"source": [
|
72 |
+
"## run"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 5,
|
78 |
+
"id": "d504778d-4ba3-43d3-b22b-76ce838a5edf",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"from transformers import AutoModelForAudioClassification\n",
|
83 |
+
"from transformers import AutoFeatureExtractor\n",
|
84 |
+
"import torch\n",
|
85 |
+
"\n",
|
86 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
87 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
88 |
+
"\n",
|
89 |
+
"preds = []\n",
|
90 |
+
"gts = []\n",
|
91 |
+
"for i in range(len(test_data)):\n",
|
92 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
93 |
+
" with torch.no_grad():\n",
|
94 |
+
" logits = model(**inputs).logits\n",
|
95 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
96 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
97 |
+
" preds.append(predicted_label)\n",
|
98 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "markdown",
|
103 |
+
"id": "f200bec5-c2d9-4549-8bb8-1400c484f499",
|
104 |
+
"metadata": {},
|
105 |
+
"source": [
|
106 |
+
"## performance"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": 6,
|
112 |
+
"id": "be97683d-da60-4d23-abc9-0be9b86cd636",
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [
|
115 |
+
{
|
116 |
+
"name": "stdout",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
" precision recall f1-score support\n",
|
120 |
+
"\n",
|
121 |
+
" bark 0.56 0.62 0.59 8\n",
|
122 |
+
" growling 1.00 0.83 0.91 6\n",
|
123 |
+
" howl 0.75 0.86 0.80 7\n",
|
124 |
+
" panting 1.00 0.80 0.89 10\n",
|
125 |
+
" whimper 0.38 0.43 0.40 7\n",
|
126 |
+
"\n",
|
127 |
+
" accuracy 0.71 38\n",
|
128 |
+
" macro avg 0.74 0.71 0.72 38\n",
|
129 |
+
"weighted avg 0.75 0.71 0.72 38\n",
|
130 |
+
"\n"
|
131 |
+
]
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"source": [
|
135 |
+
"from sklearn.metrics import classification_report\n",
|
136 |
+
"test_performance = classification_report(gts, preds)\n",
|
137 |
+
"print(test_performance)"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "markdown",
|
142 |
+
"id": "ea3ee48d-19c7-4f9d-9c2c-4b03d4748acb",
|
143 |
+
"metadata": {},
|
144 |
+
"source": [
|
145 |
+
"## load dataset (validation data)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 7,
|
151 |
+
"id": "33e5051e-75a2-4523-905c-fe1dbc81eda2",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "stderr",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"data": {
|
163 |
+
"application/vnd.jupyter.widget-view+json": {
|
164 |
+
"model_id": "cf5cfe439c174b8284b4668419af6dca",
|
165 |
+
"version_major": 2,
|
166 |
+
"version_minor": 0
|
167 |
+
},
|
168 |
+
"text/plain": [
|
169 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
"metadata": {},
|
173 |
+
"output_type": "display_data"
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"source": [
|
177 |
+
"from datasets import load_dataset, Audio\n",
|
178 |
+
"\n",
|
179 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
180 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
181 |
+
"test_data = dataset['validation']\n",
|
182 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "markdown",
|
187 |
+
"id": "36bee3b3-e66f-46dc-8030-cef3cb62ff97",
|
188 |
+
"metadata": {},
|
189 |
+
"source": [
|
190 |
+
"## run"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": 9,
|
196 |
+
"id": "914a471c-5d76-482b-a4f3-3c5eeebdd697",
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"from transformers import AutoModelForAudioClassification\n",
|
201 |
+
"import torch\n",
|
202 |
+
"\n",
|
203 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
204 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
205 |
+
"\n",
|
206 |
+
"preds = []\n",
|
207 |
+
"gts = []\n",
|
208 |
+
"for i in range(len(test_data)):\n",
|
209 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
210 |
+
" with torch.no_grad():\n",
|
211 |
+
" logits = model(**inputs).logits\n",
|
212 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
213 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
214 |
+
" preds.append(predicted_label)\n",
|
215 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"id": "4f1d5bab-4f88-4628-918e-d14b29c2143b",
|
221 |
+
"metadata": {},
|
222 |
+
"source": [
|
223 |
+
"## performance"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 10,
|
229 |
+
"id": "26e0c704-b5b6-4bf0-8b58-1e3615b76cb7",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"name": "stdout",
|
234 |
+
"output_type": "stream",
|
235 |
+
"text": [
|
236 |
+
" precision recall f1-score support\n",
|
237 |
+
"\n",
|
238 |
+
" bark 0.75 0.67 0.71 9\n",
|
239 |
+
" growling 1.00 0.71 0.83 7\n",
|
240 |
+
" howl 0.86 0.86 0.86 7\n",
|
241 |
+
" panting 1.00 0.70 0.82 10\n",
|
242 |
+
" whimper 0.54 1.00 0.70 7\n",
|
243 |
+
"\n",
|
244 |
+
" accuracy 0.78 40\n",
|
245 |
+
" macro avg 0.83 0.79 0.78 40\n",
|
246 |
+
"weighted avg 0.84 0.78 0.78 40\n",
|
247 |
+
"\n"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"from sklearn.metrics import classification_report\n",
|
253 |
+
"valid_performance = classification_report(gts, preds)\n",
|
254 |
+
"print(valid_performance)"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"metadata": {
|
259 |
+
"kernelspec": {
|
260 |
+
"display_name": "g3p8",
|
261 |
+
"language": "python",
|
262 |
+
"name": "g3p8"
|
263 |
+
},
|
264 |
+
"language_info": {
|
265 |
+
"codemirror_mode": {
|
266 |
+
"name": "ipython",
|
267 |
+
"version": 3
|
268 |
+
},
|
269 |
+
"file_extension": ".py",
|
270 |
+
"mimetype": "text/x-python",
|
271 |
+
"name": "python",
|
272 |
+
"nbconvert_exporter": "python",
|
273 |
+
"pygments_lexer": "ipython3",
|
274 |
+
"version": "3.7.9"
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"nbformat": 4,
|
278 |
+
"nbformat_minor": 5
|
279 |
+
}
|
.ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# example"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"MODEL_NAME = \"gaepago-20-lite\"\n",
|
19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
25 |
+
"metadata": {},
|
26 |
+
"source": [
|
27 |
+
"## load dataset (test data)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "4438f0b33464423b92fecc698c1935e5",
|
47 |
+
"version_major": 2,
|
48 |
+
"version_minor": 0
|
49 |
+
},
|
50 |
+
"text/plain": [
|
51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"from datasets import load_dataset, Audio\n",
|
60 |
+
"from transformers import AutoFeatureExtractor\n",
|
61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
63 |
+
"test_data = dataset['test']\n",
|
64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate\n",
|
65 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 7,
|
71 |
+
"id": "779c547a-7e27-4481-8a66-fd9900e41964",
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"from transformers import AutoConfig\n",
|
76 |
+
"config = AutoConfig.from_pretrained(MODEL_NAME)"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 3,
|
82 |
+
"id": "03659af7-3d90-4431-a4ea-a8d99e93602f",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"import torch"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 4,
|
92 |
+
"id": "0f58cfcf-ba2d-45e4-b4e9-87df88e9dbad",
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"loaded_quantized_model = torch.jit.load(\"gaepago-20-lite/model_quant_int8.pt\")"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "markdown",
|
101 |
+
"id": "52212656-a3e9-4bd2-ac2d-427acb5795c6",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"## 모델결과"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 9,
|
110 |
+
"id": "3d4f5365-d6f1-4163-9c47-ce8c89e13884",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"preds = []\n",
|
115 |
+
"gts = []\n",
|
116 |
+
"# quant_logits_list = []\n",
|
117 |
+
"for i in range(len(test_data)):\n",
|
118 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
119 |
+
" with torch.no_grad():\n",
|
120 |
+
" logits = loaded_quantized_model(**inputs)['logits']\n",
|
121 |
+
"# quant_logits_list.append(logits)\n",
|
122 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
123 |
+
" predicted_label = config.id2label[predicted_class_ids]\n",
|
124 |
+
" preds.append(predicted_label)\n",
|
125 |
+
" gts.append(config.id2label[test_data[i]['label']])"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 10,
|
131 |
+
"id": "93b3c424-bab6-4774-915e-9e9f534f762d",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
" precision recall f1-score support\n",
|
139 |
+
"\n",
|
140 |
+
" bark 0.5556 0.6250 0.5882 8\n",
|
141 |
+
" growling 1.0000 0.8333 0.9091 6\n",
|
142 |
+
" howl 0.7500 0.8571 0.8000 7\n",
|
143 |
+
" panting 1.0000 0.8000 0.8889 10\n",
|
144 |
+
" whimper 0.3750 0.4286 0.4000 7\n",
|
145 |
+
"\n",
|
146 |
+
" accuracy 0.7105 38\n",
|
147 |
+
" macro avg 0.7361 0.7088 0.7172 38\n",
|
148 |
+
"weighted avg 0.7452 0.7105 0.7224 38\n",
|
149 |
+
"\n"
|
150 |
+
]
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"from sklearn.metrics import classification_report\n",
|
155 |
+
"test_performance = classification_report(gts, preds,digits=4)\n",
|
156 |
+
"print(test_performance)"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": null,
|
162 |
+
"id": "99a3ea38-54c8-4aed-9bbf-12f98bf09dc5",
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": []
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"metadata": {
|
169 |
+
"kernelspec": {
|
170 |
+
"display_name": "g3p8",
|
171 |
+
"language": "python",
|
172 |
+
"name": "g3p8"
|
173 |
+
},
|
174 |
+
"language_info": {
|
175 |
+
"codemirror_mode": {
|
176 |
+
"name": "ipython",
|
177 |
+
"version": 3
|
178 |
+
},
|
179 |
+
"file_extension": ".py",
|
180 |
+
"mimetype": "text/x-python",
|
181 |
+
"name": "python",
|
182 |
+
"nbconvert_exporter": "python",
|
183 |
+
"pygments_lexer": "ipython3",
|
184 |
+
"version": "3.7.9"
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"nbformat": 4,
|
188 |
+
"nbformat_minor": 5
|
189 |
+
}
|
.ipynb_checkpoints/text_label-checkpoint.json
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bark": [
|
3 |
+
[
|
4 |
+
"너무 신나서 어쩌지?",
|
5 |
+
"긍정"
|
6 |
+
],
|
7 |
+
[
|
8 |
+
"집사, 놀아줘!",
|
9 |
+
"긍정"
|
10 |
+
],
|
11 |
+
[
|
12 |
+
"지금 너무 신나!",
|
13 |
+
"긍정"
|
14 |
+
],
|
15 |
+
[
|
16 |
+
"누가 왔나 봐!",
|
17 |
+
"긍정"
|
18 |
+
],
|
19 |
+
[
|
20 |
+
"놀아줘!! 놀아달란말이야!!",
|
21 |
+
"긍정"
|
22 |
+
],
|
23 |
+
[
|
24 |
+
"안녕 🐶",
|
25 |
+
"긍정"
|
26 |
+
],
|
27 |
+
[
|
28 |
+
"난 너를 좋아하는 걸, 그런데 너는 나를 좋아해?",
|
29 |
+
"긍정"
|
30 |
+
],
|
31 |
+
[
|
32 |
+
"주목해줘! 놀자!",
|
33 |
+
"긍정"
|
34 |
+
],
|
35 |
+
[
|
36 |
+
"놀이 시간이야, 같이 놀자!",
|
37 |
+
"긍정"
|
38 |
+
],
|
39 |
+
[
|
40 |
+
"다가오지마!",
|
41 |
+
"부정"
|
42 |
+
],
|
43 |
+
[
|
44 |
+
"뭔가 이상한 소리 들려!",
|
45 |
+
"부정"
|
46 |
+
],
|
47 |
+
[
|
48 |
+
"경계해, 경계해!",
|
49 |
+
"부정"
|
50 |
+
],
|
51 |
+
[
|
52 |
+
"아니야, 아니야!",
|
53 |
+
"부정"
|
54 |
+
],
|
55 |
+
[
|
56 |
+
"건들지마!!!!",
|
57 |
+
"부정"
|
58 |
+
],
|
59 |
+
[
|
60 |
+
"뭔가 불안해, 도와줘!",
|
61 |
+
"부정"
|
62 |
+
],
|
63 |
+
[
|
64 |
+
"주인~ 뭐해~?",
|
65 |
+
"중립"
|
66 |
+
],
|
67 |
+
[
|
68 |
+
"밖에 뭐가 있는 거 같아!",
|
69 |
+
"중립"
|
70 |
+
],
|
71 |
+
[
|
72 |
+
"이리 와봐!",
|
73 |
+
"중립"
|
74 |
+
],
|
75 |
+
[
|
76 |
+
"날 보고있어?",
|
77 |
+
"중립"
|
78 |
+
],
|
79 |
+
[
|
80 |
+
"밖에 뭐 있어?",
|
81 |
+
"중립"
|
82 |
+
],
|
83 |
+
[
|
84 |
+
"이거 내꺼야!",
|
85 |
+
"중립"
|
86 |
+
],
|
87 |
+
[
|
88 |
+
"물 마실래, 마실 것 좀 줘.",
|
89 |
+
"중립"
|
90 |
+
],
|
91 |
+
[
|
92 |
+
"목이 말라, 물 좀 줄래?",
|
93 |
+
"중립"
|
94 |
+
]
|
95 |
+
],
|
96 |
+
"growling": [
|
97 |
+
[
|
98 |
+
"나 좀 내버려 둬!",
|
99 |
+
"부정"
|
100 |
+
],
|
101 |
+
[
|
102 |
+
"더 이상 다가오지마!",
|
103 |
+
"부정"
|
104 |
+
],
|
105 |
+
[
|
106 |
+
"너무 까다로워!",
|
107 |
+
"부정"
|
108 |
+
],
|
109 |
+
[
|
110 |
+
"내가 경계하고 있어!",
|
111 |
+
"부정"
|
112 |
+
],
|
113 |
+
[
|
114 |
+
"빨리 이리 와!",
|
115 |
+
"부정"
|
116 |
+
],
|
117 |
+
[
|
118 |
+
"나 너무 화나!",
|
119 |
+
"부정"
|
120 |
+
],
|
121 |
+
[
|
122 |
+
"나 싸울 준비됐어!",
|
123 |
+
"부정"
|
124 |
+
],
|
125 |
+
[
|
126 |
+
"그만 좀 해!",
|
127 |
+
"부정"
|
128 |
+
],
|
129 |
+
[
|
130 |
+
"내게 장난치지마!",
|
131 |
+
"부정"
|
132 |
+
],
|
133 |
+
[
|
134 |
+
"나 지금 너무 짜증나!",
|
135 |
+
"부정"
|
136 |
+
],
|
137 |
+
[
|
138 |
+
"나 지금 안 좋아!",
|
139 |
+
"부정"
|
140 |
+
],
|
141 |
+
[
|
142 |
+
"다가오지마!",
|
143 |
+
"부정"
|
144 |
+
],
|
145 |
+
[
|
146 |
+
"너에게 화난 거야!",
|
147 |
+
"부정"
|
148 |
+
],
|
149 |
+
[
|
150 |
+
"좀 멀리 가!",
|
151 |
+
"부정"
|
152 |
+
],
|
153 |
+
[
|
154 |
+
"나 싸우려고 준비됐어!",
|
155 |
+
"부정"
|
156 |
+
],
|
157 |
+
[
|
158 |
+
"한번 더 건드리면 물어버릴거야!!!",
|
159 |
+
"부정"
|
160 |
+
],
|
161 |
+
[
|
162 |
+
"나한테 이렇게 위협적으로 다가오지마!",
|
163 |
+
"부정"
|
164 |
+
],
|
165 |
+
[
|
166 |
+
"나의 영역을 침범하면 안돼! 이해해줘!",
|
167 |
+
"부정"
|
168 |
+
],
|
169 |
+
[
|
170 |
+
"그만 좀 귀찮게 해! 내가 분명히 경고했잖아!",
|
171 |
+
"부정"
|
172 |
+
],
|
173 |
+
[
|
174 |
+
"불편해, 물러서줘.",
|
175 |
+
"부정"
|
176 |
+
],
|
177 |
+
[
|
178 |
+
"경고하는 거야, 가까이 오지 마.",
|
179 |
+
"부정"
|
180 |
+
],
|
181 |
+
[
|
182 |
+
"좀 너무 가까워, 거리 좀 둬.",
|
183 |
+
"부정"
|
184 |
+
],
|
185 |
+
[
|
186 |
+
"나를 방해하지 마, 신경 써줘.",
|
187 |
+
"부정"
|
188 |
+
],
|
189 |
+
[
|
190 |
+
"내가 불편해, 거리 좀 두고 있어.",
|
191 |
+
"부정"
|
192 |
+
],
|
193 |
+
[
|
194 |
+
"가까이 오지 마.",
|
195 |
+
"부정"
|
196 |
+
],
|
197 |
+
[
|
198 |
+
"나를 방해하지 마, 존중해줘. Respect Me!!",
|
199 |
+
"부정"
|
200 |
+
]
|
201 |
+
],
|
202 |
+
"howl": [
|
203 |
+
[
|
204 |
+
"나 여기있어, 봐줘!",
|
205 |
+
"중립"
|
206 |
+
],
|
207 |
+
[
|
208 |
+
"너 어디 갔어?!",
|
209 |
+
"중립"
|
210 |
+
],
|
211 |
+
[
|
212 |
+
"나 너무 외로워!",
|
213 |
+
"중립"
|
214 |
+
],
|
215 |
+
[
|
216 |
+
"이리 와봐, 나 있는 곳으로!",
|
217 |
+
"중립"
|
218 |
+
],
|
219 |
+
[
|
220 |
+
"너 없으면 너무 심심해!",
|
221 |
+
"중립"
|
222 |
+
],
|
223 |
+
[
|
224 |
+
"나도 같이 가고 싶어!",
|
225 |
+
"중립"
|
226 |
+
],
|
227 |
+
[
|
228 |
+
"나 심심해",
|
229 |
+
"중립"
|
230 |
+
],
|
231 |
+
[
|
232 |
+
"어디야? 나 찾아봐!",
|
233 |
+
"중립"
|
234 |
+
],
|
235 |
+
[
|
236 |
+
"언제 오려고 그래?",
|
237 |
+
"중립"
|
238 |
+
],
|
239 |
+
[
|
240 |
+
"나는 여기 있는데!",
|
241 |
+
"중립"
|
242 |
+
],
|
243 |
+
[
|
244 |
+
"빨리 돌아와줘!",
|
245 |
+
"중립"
|
246 |
+
],
|
247 |
+
[
|
248 |
+
"나 혼자 남겨두지 마!",
|
249 |
+
"중립"
|
250 |
+
],
|
251 |
+
[
|
252 |
+
"나 여기있어!! 나좀 봐줘!!!",
|
253 |
+
"중립"
|
254 |
+
],
|
255 |
+
[
|
256 |
+
"나 잘 보고 있어? 나 괜찮아?",
|
257 |
+
"중립"
|
258 |
+
],
|
259 |
+
[
|
260 |
+
"주인, 나 좀 안아줄 수 있을까?",
|
261 |
+
"중립"
|
262 |
+
],
|
263 |
+
[
|
264 |
+
"외로워, 보고 싶어.",
|
265 |
+
"중립"
|
266 |
+
],
|
267 |
+
[
|
268 |
+
"다른 강아지와 '합창'하고 싶어.",
|
269 |
+
"중립"
|
270 |
+
],
|
271 |
+
[
|
272 |
+
"너를 보고싶어, 언제 와?",
|
273 |
+
"중립"
|
274 |
+
],
|
275 |
+
[
|
276 |
+
"무언가 알려고 하는 중이야.",
|
277 |
+
"중립"
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"다른 강아지들이랑 노래하고 싶어.",
|
281 |
+
"긍정"
|
282 |
+
]
|
283 |
+
],
|
284 |
+
"panting": [
|
285 |
+
[
|
286 |
+
"더워~ 에어컨 켜줘.",
|
287 |
+
"부정"
|
288 |
+
],
|
289 |
+
[
|
290 |
+
"운동 후 휴식 중이야.",
|
291 |
+
"중립"
|
292 |
+
],
|
293 |
+
[
|
294 |
+
"숨이 차, 좀 도와줘.",
|
295 |
+
"부정"
|
296 |
+
],
|
297 |
+
[
|
298 |
+
"휴식이 필요해, 좀 쉬자.",
|
299 |
+
"부정"
|
300 |
+
],
|
301 |
+
[
|
302 |
+
"너무 더워, 물 좀 줄래?",
|
303 |
+
"부정"
|
304 |
+
],
|
305 |
+
[
|
306 |
+
"너무 더워, 바람 좀 쐬자.",
|
307 |
+
"부정"
|
308 |
+
],
|
309 |
+
[
|
310 |
+
"힘들게 운동했어, 휴식 좀!",
|
311 |
+
"부정"
|
312 |
+
],
|
313 |
+
[
|
314 |
+
"숨이 차, 쉬는 시간이 필요해.",
|
315 |
+
"부정"
|
316 |
+
],
|
317 |
+
[
|
318 |
+
"휴식이 필요해, 조용히 좀...",
|
319 |
+
"부정"
|
320 |
+
],
|
321 |
+
[
|
322 |
+
"물 좀 마시고 싶어, 줄래?",
|
323 |
+
"중립"
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"많이 뛰어서 힘들어, 휴식이 필요해.",
|
327 |
+
"부정"
|
328 |
+
],
|
329 |
+
[
|
330 |
+
"휴식이 필요해, 좀 더 쉬자.",
|
331 |
+
"중립"
|
332 |
+
],
|
333 |
+
[
|
334 |
+
"너무 더워서 물 좀 마시고 싶어.",
|
335 |
+
"중립"
|
336 |
+
],
|
337 |
+
[
|
338 |
+
"좀 더운 �� 같아, 바람 좀 쐬고 싶어.",
|
339 |
+
"중립"
|
340 |
+
],
|
341 |
+
[
|
342 |
+
"지금 좀 쉴 시간이 필요해, 잠시만 기다려.",
|
343 |
+
"중립"
|
344 |
+
],
|
345 |
+
[
|
346 |
+
"지금 진정할 시간이 필요해!!!",
|
347 |
+
"중립"
|
348 |
+
],
|
349 |
+
[
|
350 |
+
"나 지금 너무 신나",
|
351 |
+
"긍정"
|
352 |
+
],
|
353 |
+
[
|
354 |
+
"너랑 놀면 더 재밌을 것 같아",
|
355 |
+
"긍정"
|
356 |
+
],
|
357 |
+
[
|
358 |
+
"나랑 놀지 않을래?",
|
359 |
+
"긍정"
|
360 |
+
],
|
361 |
+
[
|
362 |
+
"밖에 나가면 재미난 일이 있을 것 같아!",
|
363 |
+
"긍정"
|
364 |
+
],
|
365 |
+
[
|
366 |
+
"오늘은 무슨 일이 있을까? 좋은 일이 생길 것 같아!",
|
367 |
+
"긍정"
|
368 |
+
],
|
369 |
+
[
|
370 |
+
"세상 모든 것들이 반가워~",
|
371 |
+
"긍정"
|
372 |
+
],
|
373 |
+
[
|
374 |
+
"너랑 친해지고 싶어~",
|
375 |
+
"긍정"
|
376 |
+
],
|
377 |
+
[
|
378 |
+
"오늘 기분 아주 나이스~",
|
379 |
+
"긍정"
|
380 |
+
],
|
381 |
+
[
|
382 |
+
"세상에서 제일 좋아!!",
|
383 |
+
"긍정"
|
384 |
+
],
|
385 |
+
[
|
386 |
+
"나 지금 기분이가 좋아~",
|
387 |
+
"긍정"
|
388 |
+
],
|
389 |
+
[
|
390 |
+
"너랑 놀고싶어~",
|
391 |
+
"긍정"
|
392 |
+
],
|
393 |
+
[
|
394 |
+
"오늘 되게 행복한 하루다~",
|
395 |
+
"긍정"
|
396 |
+
],
|
397 |
+
[
|
398 |
+
"오늘 내 생일인가? 너무 행복해><",
|
399 |
+
"긍정"
|
400 |
+
],
|
401 |
+
[
|
402 |
+
"만나서 반가워",
|
403 |
+
"긍정"
|
404 |
+
],
|
405 |
+
[
|
406 |
+
"너는 이름이 뭐니?",
|
407 |
+
"긍정"
|
408 |
+
],
|
409 |
+
[
|
410 |
+
"난 너가 좋아!!",
|
411 |
+
"긍정"
|
412 |
+
],
|
413 |
+
[
|
414 |
+
"나 매우 재밌어",
|
415 |
+
"긍정"
|
416 |
+
],
|
417 |
+
[
|
418 |
+
"나랑 같이 놀러 나가자",
|
419 |
+
"긍정"
|
420 |
+
]
|
421 |
+
],
|
422 |
+
"whimper": [
|
423 |
+
[
|
424 |
+
"나 너무 두려워",
|
425 |
+
"부정"
|
426 |
+
],
|
427 |
+
[
|
428 |
+
"나 지금 너무 외로워",
|
429 |
+
"부정"
|
430 |
+
],
|
431 |
+
[
|
432 |
+
"나 너무 슬퍼",
|
433 |
+
"부정"
|
434 |
+
],
|
435 |
+
[
|
436 |
+
"나 좀 안아줘",
|
437 |
+
"부정"
|
438 |
+
],
|
439 |
+
[
|
440 |
+
"나 지금 너무 불편해",
|
441 |
+
"부정"
|
442 |
+
],
|
443 |
+
[
|
444 |
+
"나 너무 피곤해",
|
445 |
+
"부정"
|
446 |
+
],
|
447 |
+
[
|
448 |
+
"조금만 더 안아줘",
|
449 |
+
"부정"
|
450 |
+
],
|
451 |
+
[
|
452 |
+
"나 좀 위로해줘",
|
453 |
+
"부정"
|
454 |
+
],
|
455 |
+
[
|
456 |
+
"나 기다리는 중",
|
457 |
+
"부정"
|
458 |
+
],
|
459 |
+
[
|
460 |
+
"외로워서 눈물이 나",
|
461 |
+
"부정"
|
462 |
+
],
|
463 |
+
[
|
464 |
+
"나 상처받았어, 너무 두려워...ㅠㅡㅠ",
|
465 |
+
"부정"
|
466 |
+
],
|
467 |
+
[
|
468 |
+
"나 놀래쪄ㅠㅡㅠ 힝구힝구..",
|
469 |
+
"부정"
|
470 |
+
],
|
471 |
+
[
|
472 |
+
"무셔워... 안아죠~~~",
|
473 |
+
"부정"
|
474 |
+
],
|
475 |
+
[
|
476 |
+
"너무 슬퍼서 맘이 아파... 안아줘...",
|
477 |
+
"부정"
|
478 |
+
],
|
479 |
+
[
|
480 |
+
"나 기분이 너무 안 좋아... 어떻게 해줄래?",
|
481 |
+
"부정"
|
482 |
+
],
|
483 |
+
[
|
484 |
+
"힝...미안해...",
|
485 |
+
"부정"
|
486 |
+
],
|
487 |
+
[
|
488 |
+
"불안해, 곁에 있어줘.",
|
489 |
+
"부정"
|
490 |
+
],
|
491 |
+
[
|
492 |
+
"밖으로 나가고 싶어.",
|
493 |
+
"중립"
|
494 |
+
],
|
495 |
+
[
|
496 |
+
"미안해, 실수했어.",
|
497 |
+
"부정"
|
498 |
+
],
|
499 |
+
[
|
500 |
+
"너무 슬퍼, 위로 좀 해줘.",
|
501 |
+
"부정"
|
502 |
+
],
|
503 |
+
[
|
504 |
+
"스트레스 받았어, 도와줘.",
|
505 |
+
"부정"
|
506 |
+
],
|
507 |
+
[
|
508 |
+
"내가 불안해, 붙어있어줘.",
|
509 |
+
"부정"
|
510 |
+
],
|
511 |
+
[
|
512 |
+
"너무 외로워, 애정을 보여줘.",
|
513 |
+
"부정"
|
514 |
+
],
|
515 |
+
[
|
516 |
+
"산책 좀 가고 싶어.",
|
517 |
+
"중립"
|
518 |
+
],
|
519 |
+
[
|
520 |
+
"정말 슬퍼, 안아줘.",
|
521 |
+
"부정"
|
522 |
+
],
|
523 |
+
[
|
524 |
+
"스트레스가 너무 많아, 안아줘.",
|
525 |
+
"부정"
|
526 |
+
]
|
527 |
+
]
|
528 |
+
}
|
.ipynb_checkpoints/text_mapping_example-checkpoint.ipynb
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"id": "8f925fb7-86ba-487f-ab85-88754d777860",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import json\n",
|
13 |
+
"with open(\"text/text_label.json\",\"r\",encoding='utf-8') as f:\n",
|
14 |
+
" text_label = json.load(f)"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 14,
|
20 |
+
"id": "d2c0a048-1db7-4236-9f26-539ed31d3d27",
|
21 |
+
"metadata": {
|
22 |
+
"tags": []
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import random\n",
|
27 |
+
"random.seed(0)\n",
|
28 |
+
"def post_process(model_output,text_label):\n",
|
29 |
+
" text_list = text_label[model_output]\n",
|
30 |
+
" text,sent = random.sample(text_list,1)[0]\n",
|
31 |
+
" return {'label' : model_output,\n",
|
32 |
+
" 'text' : text,\n",
|
33 |
+
" 'sentiment' : sent}"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 15,
|
39 |
+
"id": "f8ca0ad8-bc0c-4766-8e13-fe093c5290df",
|
40 |
+
"metadata": {
|
41 |
+
"tags": []
|
42 |
+
},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"text/plain": [
|
47 |
+
"{'label': 'bark', 'text': '아니야, 아니야!', 'sentiment': '부정'}"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"execution_count": 15,
|
51 |
+
"metadata": {},
|
52 |
+
"output_type": "execute_result"
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"model_output = 'bark'\n",
|
57 |
+
"post_process(model_output,text_label)"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"id": "da690a64-4dea-4b2a-89c1-23ea8bad955c",
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": []
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"kernelspec": {
|
71 |
+
"display_name": "Python 3 (ipykernel)",
|
72 |
+
"language": "python",
|
73 |
+
"name": "python3"
|
74 |
+
},
|
75 |
+
"language_info": {
|
76 |
+
"codemirror_mode": {
|
77 |
+
"name": "ipython",
|
78 |
+
"version": 3
|
79 |
+
},
|
80 |
+
"file_extension": ".py",
|
81 |
+
"mimetype": "text/x-python",
|
82 |
+
"name": "python",
|
83 |
+
"nbconvert_exporter": "python",
|
84 |
+
"pygments_lexer": "ipython3",
|
85 |
+
"version": "3.10.8"
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"nbformat": 4,
|
89 |
+
"nbformat_minor": 5
|
90 |
+
}
|
app.py
CHANGED
@@ -13,7 +13,10 @@ MODEL_NAME = "Gae8J/gaepago-20"
|
|
13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
14 |
|
15 |
# Import Model & feature extractor
|
16 |
-
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
17 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
18 |
|
19 |
# 모델 cpu로 변경하여 진행
|
@@ -27,9 +30,12 @@ def gaepago_fn(tmp_audio_dir):
|
|
27 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
28 |
,return_tensors="pt")
|
29 |
with torch.no_grad():
|
30 |
-
logits = model(**inputs).logits
|
|
|
|
|
|
|
31 |
predicted_class_ids = torch.argmax(logits).item()
|
32 |
-
predicted_label =
|
33 |
|
34 |
return predicted_label
|
35 |
|
@@ -47,4 +53,4 @@ with main_api:
|
|
47 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
48 |
# examples = gr.Examples(examples=example_list,
|
49 |
# inputs=[audio])
|
50 |
-
main_api.launch()
|
|
|
13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
14 |
|
15 |
# Import Model & feature extractor
|
16 |
+
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
17 |
+
from transformers import AutoConfig
|
18 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
19 |
+
model = torch.jit.load(f"./model/gaepago-20-lite/model_quant_int8.pt")
|
20 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
21 |
|
22 |
# 모델 cpu로 변경하여 진행
|
|
|
30 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
31 |
,return_tensors="pt")
|
32 |
with torch.no_grad():
|
33 |
+
# logits = model(**inputs).logits
|
34 |
+
logits = model(**inputs)["logits"]
|
35 |
+
# predicted_class_ids = torch.argmax(logits).item()
|
36 |
+
# predicted_label = model.config.id2label[predicted_class_ids]
|
37 |
predicted_class_ids = torch.argmax(logits).item()
|
38 |
+
predicted_label = config.id2label[predicted_class_ids]
|
39 |
|
40 |
return predicted_label
|
41 |
|
|
|
53 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
54 |
# examples = gr.Examples(examples=example_list,
|
55 |
# inputs=[audio])
|
56 |
+
main_api.launch(share=True)
|
eval_and_inference.ipynb
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# example"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"MODEL_NAME = \"gaepago-20\"\n",
|
19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
25 |
+
"metadata": {},
|
26 |
+
"source": [
|
27 |
+
"## load dataset (test data)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "f078fd108d2044b48a961bee6ed49747",
|
47 |
+
"version_major": 2,
|
48 |
+
"version_minor": 0
|
49 |
+
},
|
50 |
+
"text/plain": [
|
51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"from datasets import load_dataset, Audio\n",
|
60 |
+
"\n",
|
61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
63 |
+
"test_data = dataset['test']\n",
|
64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "markdown",
|
69 |
+
"id": "d0c16b3d-32dd-4e61-86bd-e21232840e98",
|
70 |
+
"metadata": {},
|
71 |
+
"source": [
|
72 |
+
"## run"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 5,
|
78 |
+
"id": "d504778d-4ba3-43d3-b22b-76ce838a5edf",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"from transformers import AutoModelForAudioClassification\n",
|
83 |
+
"from transformers import AutoFeatureExtractor\n",
|
84 |
+
"import torch\n",
|
85 |
+
"\n",
|
86 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
87 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
88 |
+
"\n",
|
89 |
+
"preds = []\n",
|
90 |
+
"gts = []\n",
|
91 |
+
"for i in range(len(test_data)):\n",
|
92 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
93 |
+
" with torch.no_grad():\n",
|
94 |
+
" logits = model(**inputs).logits\n",
|
95 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
96 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
97 |
+
" preds.append(predicted_label)\n",
|
98 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "markdown",
|
103 |
+
"id": "f200bec5-c2d9-4549-8bb8-1400c484f499",
|
104 |
+
"metadata": {},
|
105 |
+
"source": [
|
106 |
+
"## performance"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": 6,
|
112 |
+
"id": "be97683d-da60-4d23-abc9-0be9b86cd636",
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [
|
115 |
+
{
|
116 |
+
"name": "stdout",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
" precision recall f1-score support\n",
|
120 |
+
"\n",
|
121 |
+
" bark 0.56 0.62 0.59 8\n",
|
122 |
+
" growling 1.00 0.83 0.91 6\n",
|
123 |
+
" howl 0.75 0.86 0.80 7\n",
|
124 |
+
" panting 1.00 0.80 0.89 10\n",
|
125 |
+
" whimper 0.38 0.43 0.40 7\n",
|
126 |
+
"\n",
|
127 |
+
" accuracy 0.71 38\n",
|
128 |
+
" macro avg 0.74 0.71 0.72 38\n",
|
129 |
+
"weighted avg 0.75 0.71 0.72 38\n",
|
130 |
+
"\n"
|
131 |
+
]
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"source": [
|
135 |
+
"from sklearn.metrics import classification_report\n",
|
136 |
+
"test_performance = classification_report(gts, preds)\n",
|
137 |
+
"print(test_performance)"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "markdown",
|
142 |
+
"id": "ea3ee48d-19c7-4f9d-9c2c-4b03d4748acb",
|
143 |
+
"metadata": {},
|
144 |
+
"source": [
|
145 |
+
"## load dataset (validation data)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 7,
|
151 |
+
"id": "33e5051e-75a2-4523-905c-fe1dbc81eda2",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "stderr",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"data": {
|
163 |
+
"application/vnd.jupyter.widget-view+json": {
|
164 |
+
"model_id": "cf5cfe439c174b8284b4668419af6dca",
|
165 |
+
"version_major": 2,
|
166 |
+
"version_minor": 0
|
167 |
+
},
|
168 |
+
"text/plain": [
|
169 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
"metadata": {},
|
173 |
+
"output_type": "display_data"
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"source": [
|
177 |
+
"from datasets import load_dataset, Audio\n",
|
178 |
+
"\n",
|
179 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
180 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
181 |
+
"test_data = dataset['validation']\n",
|
182 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "markdown",
|
187 |
+
"id": "36bee3b3-e66f-46dc-8030-cef3cb62ff97",
|
188 |
+
"metadata": {},
|
189 |
+
"source": [
|
190 |
+
"## run"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": 9,
|
196 |
+
"id": "914a471c-5d76-482b-a4f3-3c5eeebdd697",
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"from transformers import AutoModelForAudioClassification\n",
|
201 |
+
"import torch\n",
|
202 |
+
"\n",
|
203 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
204 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
205 |
+
"\n",
|
206 |
+
"preds = []\n",
|
207 |
+
"gts = []\n",
|
208 |
+
"for i in range(len(test_data)):\n",
|
209 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
210 |
+
" with torch.no_grad():\n",
|
211 |
+
" logits = model(**inputs).logits\n",
|
212 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
213 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
214 |
+
" preds.append(predicted_label)\n",
|
215 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"id": "4f1d5bab-4f88-4628-918e-d14b29c2143b",
|
221 |
+
"metadata": {},
|
222 |
+
"source": [
|
223 |
+
"## performance"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 10,
|
229 |
+
"id": "26e0c704-b5b6-4bf0-8b58-1e3615b76cb7",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"name": "stdout",
|
234 |
+
"output_type": "stream",
|
235 |
+
"text": [
|
236 |
+
" precision recall f1-score support\n",
|
237 |
+
"\n",
|
238 |
+
" bark 0.75 0.67 0.71 9\n",
|
239 |
+
" growling 1.00 0.71 0.83 7\n",
|
240 |
+
" howl 0.86 0.86 0.86 7\n",
|
241 |
+
" panting 1.00 0.70 0.82 10\n",
|
242 |
+
" whimper 0.54 1.00 0.70 7\n",
|
243 |
+
"\n",
|
244 |
+
" accuracy 0.78 40\n",
|
245 |
+
" macro avg 0.83 0.79 0.78 40\n",
|
246 |
+
"weighted avg 0.84 0.78 0.78 40\n",
|
247 |
+
"\n"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"from sklearn.metrics import classification_report\n",
|
253 |
+
"valid_performance = classification_report(gts, preds)\n",
|
254 |
+
"print(valid_performance)"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"metadata": {
|
259 |
+
"kernelspec": {
|
260 |
+
"display_name": "g3p8",
|
261 |
+
"language": "python",
|
262 |
+
"name": "g3p8"
|
263 |
+
},
|
264 |
+
"language_info": {
|
265 |
+
"codemirror_mode": {
|
266 |
+
"name": "ipython",
|
267 |
+
"version": 3
|
268 |
+
},
|
269 |
+
"file_extension": ".py",
|
270 |
+
"mimetype": "text/x-python",
|
271 |
+
"name": "python",
|
272 |
+
"nbconvert_exporter": "python",
|
273 |
+
"pygments_lexer": "ipython3",
|
274 |
+
"version": "3.7.9"
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"nbformat": 4,
|
278 |
+
"nbformat_minor": 5
|
279 |
+
}
|
eval_and_inference_lite_v1.ipynb
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# example"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"MODEL_NAME = \"gaepago-20-lite\"\n",
|
19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
25 |
+
"metadata": {},
|
26 |
+
"source": [
|
27 |
+
"## load dataset (test data)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "4438f0b33464423b92fecc698c1935e5",
|
47 |
+
"version_major": 2,
|
48 |
+
"version_minor": 0
|
49 |
+
},
|
50 |
+
"text/plain": [
|
51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"from datasets import load_dataset, Audio\n",
|
60 |
+
"from transformers import AutoFeatureExtractor\n",
|
61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
63 |
+
"test_data = dataset['test']\n",
|
64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate\n",
|
65 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 7,
|
71 |
+
"id": "779c547a-7e27-4481-8a66-fd9900e41964",
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"from transformers import AutoConfig\n",
|
76 |
+
"config = AutoConfig.from_pretrained(MODEL_NAME)"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 3,
|
82 |
+
"id": "03659af7-3d90-4431-a4ea-a8d99e93602f",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"import torch"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 4,
|
92 |
+
"id": "0f58cfcf-ba2d-45e4-b4e9-87df88e9dbad",
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"loaded_quantized_model = torch.jit.load(\"gaepago-20-lite/model_quant_int8.pt\")"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "markdown",
|
101 |
+
"id": "52212656-a3e9-4bd2-ac2d-427acb5795c6",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"## 모델결과"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 9,
|
110 |
+
"id": "3d4f5365-d6f1-4163-9c47-ce8c89e13884",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"preds = []\n",
|
115 |
+
"gts = []\n",
|
116 |
+
"# quant_logits_list = []\n",
|
117 |
+
"for i in range(len(test_data)):\n",
|
118 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
119 |
+
" with torch.no_grad():\n",
|
120 |
+
" logits = loaded_quantized_model(**inputs)['logits']\n",
|
121 |
+
"# quant_logits_list.append(logits)\n",
|
122 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
123 |
+
" predicted_label = config.id2label[predicted_class_ids]\n",
|
124 |
+
" preds.append(predicted_label)\n",
|
125 |
+
" gts.append(config.id2label[test_data[i]['label']])"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 10,
|
131 |
+
"id": "93b3c424-bab6-4774-915e-9e9f534f762d",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
" precision recall f1-score support\n",
|
139 |
+
"\n",
|
140 |
+
" bark 0.5556 0.6250 0.5882 8\n",
|
141 |
+
" growling 1.0000 0.8333 0.9091 6\n",
|
142 |
+
" howl 0.7500 0.8571 0.8000 7\n",
|
143 |
+
" panting 1.0000 0.8000 0.8889 10\n",
|
144 |
+
" whimper 0.3750 0.4286 0.4000 7\n",
|
145 |
+
"\n",
|
146 |
+
" accuracy 0.7105 38\n",
|
147 |
+
" macro avg 0.7361 0.7088 0.7172 38\n",
|
148 |
+
"weighted avg 0.7452 0.7105 0.7224 38\n",
|
149 |
+
"\n"
|
150 |
+
]
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"from sklearn.metrics import classification_report\n",
|
155 |
+
"test_performance = classification_report(gts, preds,digits=4)\n",
|
156 |
+
"print(test_performance)"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": null,
|
162 |
+
"id": "99a3ea38-54c8-4aed-9bbf-12f98bf09dc5",
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": []
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"metadata": {
|
169 |
+
"kernelspec": {
|
170 |
+
"display_name": "Python 3 (ipykernel)",
|
171 |
+
"language": "python",
|
172 |
+
"name": "python3"
|
173 |
+
},
|
174 |
+
"language_info": {
|
175 |
+
"codemirror_mode": {
|
176 |
+
"name": "ipython",
|
177 |
+
"version": 3
|
178 |
+
},
|
179 |
+
"file_extension": ".py",
|
180 |
+
"mimetype": "text/x-python",
|
181 |
+
"name": "python",
|
182 |
+
"nbconvert_exporter": "python",
|
183 |
+
"pygments_lexer": "ipython3",
|
184 |
+
"version": "3.8.16"
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"nbformat": 4,
|
188 |
+
"nbformat_minor": 5
|
189 |
+
}
|
model/gaepago-20-lite/.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gaepago-20",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForSequenceClassification"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 256,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": false,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "sum",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": false,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_norm": "group",
|
51 |
+
"feat_proj_dropout": 0.1,
|
52 |
+
"feat_quantizer_dropout": 0.0,
|
53 |
+
"final_dropout": 0.0,
|
54 |
+
"freeze_feat_extract_train": true,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.1,
|
57 |
+
"hidden_size": 768,
|
58 |
+
"id2label": {
|
59 |
+
"0": "howl",
|
60 |
+
"1": "growling",
|
61 |
+
"2": "bark",
|
62 |
+
"3": "panting",
|
63 |
+
"4": "whimper"
|
64 |
+
},
|
65 |
+
"initializer_range": 0.02,
|
66 |
+
"intermediate_size": 3072,
|
67 |
+
"label2id": {
|
68 |
+
"bark": "2",
|
69 |
+
"growling": "1",
|
70 |
+
"howl": "0",
|
71 |
+
"panting": "3",
|
72 |
+
"whimper": "4"
|
73 |
+
},
|
74 |
+
"layer_norm_eps": 1e-05,
|
75 |
+
"layerdrop": 0.0,
|
76 |
+
"mask_channel_length": 10,
|
77 |
+
"mask_channel_min_space": 1,
|
78 |
+
"mask_channel_other": 0.0,
|
79 |
+
"mask_channel_prob": 0.0,
|
80 |
+
"mask_channel_selection": "static",
|
81 |
+
"mask_feature_length": 10,
|
82 |
+
"mask_feature_min_masks": 0,
|
83 |
+
"mask_feature_prob": 0.0,
|
84 |
+
"mask_time_length": 10,
|
85 |
+
"mask_time_min_masks": 2,
|
86 |
+
"mask_time_min_space": 1,
|
87 |
+
"mask_time_other": 0.0,
|
88 |
+
"mask_time_prob": 0.05,
|
89 |
+
"mask_time_selection": "static",
|
90 |
+
"model_type": "wav2vec2",
|
91 |
+
"no_mask_channel_overlap": false,
|
92 |
+
"no_mask_time_overlap": false,
|
93 |
+
"num_adapter_layers": 3,
|
94 |
+
"num_attention_heads": 12,
|
95 |
+
"num_codevector_groups": 2,
|
96 |
+
"num_codevectors_per_group": 320,
|
97 |
+
"num_conv_pos_embedding_groups": 16,
|
98 |
+
"num_conv_pos_embeddings": 128,
|
99 |
+
"num_feat_extract_layers": 7,
|
100 |
+
"num_hidden_layers": 12,
|
101 |
+
"num_negatives": 100,
|
102 |
+
"output_hidden_size": 768,
|
103 |
+
"pad_token_id": 0,
|
104 |
+
"proj_codevector_dim": 256,
|
105 |
+
"tdnn_dilation": [
|
106 |
+
1,
|
107 |
+
2,
|
108 |
+
3,
|
109 |
+
1,
|
110 |
+
1
|
111 |
+
],
|
112 |
+
"tdnn_dim": [
|
113 |
+
512,
|
114 |
+
512,
|
115 |
+
512,
|
116 |
+
512,
|
117 |
+
1500
|
118 |
+
],
|
119 |
+
"tdnn_kernel": [
|
120 |
+
5,
|
121 |
+
3,
|
122 |
+
3,
|
123 |
+
1,
|
124 |
+
1
|
125 |
+
],
|
126 |
+
"torch_dtype": "float32",
|
127 |
+
"transformers_version": "4.29.2",
|
128 |
+
"use_weighted_layer_sum": false,
|
129 |
+
"vocab_size": 32,
|
130 |
+
"xvector_output_dim": 512
|
131 |
+
}
|
model/gaepago-20-lite/config.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gaepago-20",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForSequenceClassification"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 256,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": false,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "sum",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": false,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_norm": "group",
|
51 |
+
"feat_proj_dropout": 0.1,
|
52 |
+
"feat_quantizer_dropout": 0.0,
|
53 |
+
"final_dropout": 0.0,
|
54 |
+
"freeze_feat_extract_train": true,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.1,
|
57 |
+
"hidden_size": 768,
|
58 |
+
"id2label": {
|
59 |
+
"0": "howl",
|
60 |
+
"1": "growling",
|
61 |
+
"2": "bark",
|
62 |
+
"3": "panting",
|
63 |
+
"4": "whimper"
|
64 |
+
},
|
65 |
+
"initializer_range": 0.02,
|
66 |
+
"intermediate_size": 3072,
|
67 |
+
"label2id": {
|
68 |
+
"bark": "2",
|
69 |
+
"growling": "1",
|
70 |
+
"howl": "0",
|
71 |
+
"panting": "3",
|
72 |
+
"whimper": "4"
|
73 |
+
},
|
74 |
+
"layer_norm_eps": 1e-05,
|
75 |
+
"layerdrop": 0.0,
|
76 |
+
"mask_channel_length": 10,
|
77 |
+
"mask_channel_min_space": 1,
|
78 |
+
"mask_channel_other": 0.0,
|
79 |
+
"mask_channel_prob": 0.0,
|
80 |
+
"mask_channel_selection": "static",
|
81 |
+
"mask_feature_length": 10,
|
82 |
+
"mask_feature_min_masks": 0,
|
83 |
+
"mask_feature_prob": 0.0,
|
84 |
+
"mask_time_length": 10,
|
85 |
+
"mask_time_min_masks": 2,
|
86 |
+
"mask_time_min_space": 1,
|
87 |
+
"mask_time_other": 0.0,
|
88 |
+
"mask_time_prob": 0.05,
|
89 |
+
"mask_time_selection": "static",
|
90 |
+
"model_type": "wav2vec2",
|
91 |
+
"no_mask_channel_overlap": false,
|
92 |
+
"no_mask_time_overlap": false,
|
93 |
+
"num_adapter_layers": 3,
|
94 |
+
"num_attention_heads": 12,
|
95 |
+
"num_codevector_groups": 2,
|
96 |
+
"num_codevectors_per_group": 320,
|
97 |
+
"num_conv_pos_embedding_groups": 16,
|
98 |
+
"num_conv_pos_embeddings": 128,
|
99 |
+
"num_feat_extract_layers": 7,
|
100 |
+
"num_hidden_layers": 12,
|
101 |
+
"num_negatives": 100,
|
102 |
+
"output_hidden_size": 768,
|
103 |
+
"pad_token_id": 0,
|
104 |
+
"proj_codevector_dim": 256,
|
105 |
+
"tdnn_dilation": [
|
106 |
+
1,
|
107 |
+
2,
|
108 |
+
3,
|
109 |
+
1,
|
110 |
+
1
|
111 |
+
],
|
112 |
+
"tdnn_dim": [
|
113 |
+
512,
|
114 |
+
512,
|
115 |
+
512,
|
116 |
+
512,
|
117 |
+
1500
|
118 |
+
],
|
119 |
+
"tdnn_kernel": [
|
120 |
+
5,
|
121 |
+
3,
|
122 |
+
3,
|
123 |
+
1,
|
124 |
+
1
|
125 |
+
],
|
126 |
+
"torch_dtype": "float32",
|
127 |
+
"transformers_version": "4.29.2",
|
128 |
+
"use_weighted_layer_sum": false,
|
129 |
+
"vocab_size": 32,
|
130 |
+
"xvector_output_dim": 512
|
131 |
+
}
|
model/gaepago-20-lite/model_quant_int8.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f76b504bb04245a11ec92b145dcfb53391b2105fa204b082fd5c58a862447769
|
3 |
+
size 122374341
|
model/gaepago-20-lite/preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"return_attention_mask": false,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
requirements.txt
CHANGED
@@ -3,15 +3,19 @@ aiohttp==3.8.4
|
|
3 |
aiosignal==1.3.1
|
4 |
altair==5.0.1
|
5 |
anyio==3.7.0
|
|
|
6 |
async-timeout==4.0.2
|
7 |
attrs==23.1.0
|
|
|
8 |
certifi==2023.5.7
|
|
|
9 |
charset-normalizer==3.1.0
|
10 |
click==8.1.3
|
11 |
cmake==3.26.4
|
12 |
contourpy==1.1.0
|
13 |
cycler==0.11.0
|
14 |
datasets==2.13.0
|
|
|
15 |
dill==0.3.6
|
16 |
exceptiongroup==1.1.1
|
17 |
fastapi==0.97.0
|
@@ -27,21 +31,28 @@ httpcore==0.17.2
|
|
27 |
httpx==0.24.1
|
28 |
huggingface-hub==0.15.1
|
29 |
idna==3.4
|
|
|
30 |
importlib-resources==5.12.0
|
31 |
Jinja2==3.1.2
|
|
|
32 |
jsonschema==4.17.3
|
33 |
kiwisolver==1.4.4
|
|
|
|
|
34 |
linkify-it-py==2.0.2
|
35 |
lit==16.0.6
|
|
|
36 |
markdown-it-py==2.2.0
|
37 |
MarkupSafe==2.1.3
|
38 |
matplotlib==3.7.1
|
39 |
mdit-py-plugins==0.3.3
|
40 |
mdurl==0.1.2
|
41 |
mpmath==1.3.0
|
|
|
42 |
multidict==6.0.4
|
43 |
multiprocess==0.70.14
|
44 |
networkx==3.1
|
|
|
45 |
numpy==1.24.3
|
46 |
nvidia-cublas-cu11==11.10.3.66
|
47 |
nvidia-cuda-cupti-cu11==11.7.101
|
@@ -59,7 +70,9 @@ packaging==23.1
|
|
59 |
pandas==2.0.2
|
60 |
Pillow==9.5.0
|
61 |
pkgutil_resolve_name==1.3.10
|
|
|
62 |
pyarrow==12.0.1
|
|
|
63 |
pydantic==1.10.9
|
64 |
pydub==0.25.1
|
65 |
Pygments==2.15.1
|
@@ -72,11 +85,16 @@ PyYAML==6.0
|
|
72 |
regex==2023.6.3
|
73 |
requests==2.31.0
|
74 |
safetensors==0.3.1
|
|
|
|
|
75 |
semantic-version==2.10.0
|
76 |
six==1.16.0
|
77 |
sniffio==1.3.0
|
|
|
|
|
78 |
starlette==0.27.0
|
79 |
sympy==1.12
|
|
|
80 |
tokenizers==0.13.3
|
81 |
toolz==0.12.0
|
82 |
torch==2.0.1
|
|
|
3 |
aiosignal==1.3.1
|
4 |
altair==5.0.1
|
5 |
anyio==3.7.0
|
6 |
+
appdirs==1.4.4
|
7 |
async-timeout==4.0.2
|
8 |
attrs==23.1.0
|
9 |
+
audioread==3.0.0
|
10 |
certifi==2023.5.7
|
11 |
+
cffi==1.15.1
|
12 |
charset-normalizer==3.1.0
|
13 |
click==8.1.3
|
14 |
cmake==3.26.4
|
15 |
contourpy==1.1.0
|
16 |
cycler==0.11.0
|
17 |
datasets==2.13.0
|
18 |
+
decorator==5.1.1
|
19 |
dill==0.3.6
|
20 |
exceptiongroup==1.1.1
|
21 |
fastapi==0.97.0
|
|
|
31 |
httpx==0.24.1
|
32 |
huggingface-hub==0.15.1
|
33 |
idna==3.4
|
34 |
+
importlib-metadata==6.7.0
|
35 |
importlib-resources==5.12.0
|
36 |
Jinja2==3.1.2
|
37 |
+
joblib==1.2.0
|
38 |
jsonschema==4.17.3
|
39 |
kiwisolver==1.4.4
|
40 |
+
lazy_loader==0.2
|
41 |
+
librosa==0.10.0.post2
|
42 |
linkify-it-py==2.0.2
|
43 |
lit==16.0.6
|
44 |
+
llvmlite==0.40.1rc1
|
45 |
markdown-it-py==2.2.0
|
46 |
MarkupSafe==2.1.3
|
47 |
matplotlib==3.7.1
|
48 |
mdit-py-plugins==0.3.3
|
49 |
mdurl==0.1.2
|
50 |
mpmath==1.3.0
|
51 |
+
msgpack==1.0.5
|
52 |
multidict==6.0.4
|
53 |
multiprocess==0.70.14
|
54 |
networkx==3.1
|
55 |
+
numba==0.57.0
|
56 |
numpy==1.24.3
|
57 |
nvidia-cublas-cu11==11.10.3.66
|
58 |
nvidia-cuda-cupti-cu11==11.7.101
|
|
|
70 |
pandas==2.0.2
|
71 |
Pillow==9.5.0
|
72 |
pkgutil_resolve_name==1.3.10
|
73 |
+
pooch==1.6.0
|
74 |
pyarrow==12.0.1
|
75 |
+
pycparser==2.21
|
76 |
pydantic==1.10.9
|
77 |
pydub==0.25.1
|
78 |
Pygments==2.15.1
|
|
|
85 |
regex==2023.6.3
|
86 |
requests==2.31.0
|
87 |
safetensors==0.3.1
|
88 |
+
scikit-learn==1.2.2
|
89 |
+
scipy==1.10.1
|
90 |
semantic-version==2.10.0
|
91 |
six==1.16.0
|
92 |
sniffio==1.3.0
|
93 |
+
soundfile==0.12.1
|
94 |
+
soxr==0.3.5
|
95 |
starlette==0.27.0
|
96 |
sympy==1.12
|
97 |
+
threadpoolctl==3.1.0
|
98 |
tokenizers==0.13.3
|
99 |
toolz==0.12.0
|
100 |
torch==2.0.1
|
text_label.json
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bark": [
|
3 |
+
[
|
4 |
+
"너무 신나서 어쩌지?",
|
5 |
+
"긍정"
|
6 |
+
],
|
7 |
+
[
|
8 |
+
"집사, 놀아줘!",
|
9 |
+
"긍정"
|
10 |
+
],
|
11 |
+
[
|
12 |
+
"지금 너무 신나!",
|
13 |
+
"긍정"
|
14 |
+
],
|
15 |
+
[
|
16 |
+
"누가 왔나 봐!",
|
17 |
+
"긍정"
|
18 |
+
],
|
19 |
+
[
|
20 |
+
"놀아줘!! 놀아달란말이야!!",
|
21 |
+
"긍정"
|
22 |
+
],
|
23 |
+
[
|
24 |
+
"안녕 🐶",
|
25 |
+
"긍정"
|
26 |
+
],
|
27 |
+
[
|
28 |
+
"난 너를 좋아하는 걸, 그런데 너는 나를 좋아해?",
|
29 |
+
"긍정"
|
30 |
+
],
|
31 |
+
[
|
32 |
+
"주목해줘! 놀자!",
|
33 |
+
"긍정"
|
34 |
+
],
|
35 |
+
[
|
36 |
+
"놀이 시간이야, 같이 놀자!",
|
37 |
+
"긍정"
|
38 |
+
],
|
39 |
+
[
|
40 |
+
"다가오지마!",
|
41 |
+
"부정"
|
42 |
+
],
|
43 |
+
[
|
44 |
+
"뭔가 이상한 소리 들려!",
|
45 |
+
"부정"
|
46 |
+
],
|
47 |
+
[
|
48 |
+
"경계해, 경계해!",
|
49 |
+
"부정"
|
50 |
+
],
|
51 |
+
[
|
52 |
+
"아니야, 아니야!",
|
53 |
+
"부정"
|
54 |
+
],
|
55 |
+
[
|
56 |
+
"건들지마!!!!",
|
57 |
+
"부정"
|
58 |
+
],
|
59 |
+
[
|
60 |
+
"뭔가 불안해, 도와줘!",
|
61 |
+
"부정"
|
62 |
+
],
|
63 |
+
[
|
64 |
+
"주인~ 뭐해~?",
|
65 |
+
"중립"
|
66 |
+
],
|
67 |
+
[
|
68 |
+
"밖에 뭐가 있는 거 같아!",
|
69 |
+
"중립"
|
70 |
+
],
|
71 |
+
[
|
72 |
+
"이리 와봐!",
|
73 |
+
"중립"
|
74 |
+
],
|
75 |
+
[
|
76 |
+
"날 보고있어?",
|
77 |
+
"중립"
|
78 |
+
],
|
79 |
+
[
|
80 |
+
"밖에 뭐 있어?",
|
81 |
+
"중립"
|
82 |
+
],
|
83 |
+
[
|
84 |
+
"이거 내꺼야!",
|
85 |
+
"중립"
|
86 |
+
],
|
87 |
+
[
|
88 |
+
"물 마실래, 마실 것 좀 줘.",
|
89 |
+
"중립"
|
90 |
+
],
|
91 |
+
[
|
92 |
+
"목이 말라, 물 좀 줄래?",
|
93 |
+
"중립"
|
94 |
+
]
|
95 |
+
],
|
96 |
+
"growling": [
|
97 |
+
[
|
98 |
+
"나 좀 내버려 둬!",
|
99 |
+
"부정"
|
100 |
+
],
|
101 |
+
[
|
102 |
+
"더 이상 다가오지마!",
|
103 |
+
"부정"
|
104 |
+
],
|
105 |
+
[
|
106 |
+
"너무 까다로워!",
|
107 |
+
"부정"
|
108 |
+
],
|
109 |
+
[
|
110 |
+
"내가 경계하고 있어!",
|
111 |
+
"부정"
|
112 |
+
],
|
113 |
+
[
|
114 |
+
"빨리 이리 와!",
|
115 |
+
"부정"
|
116 |
+
],
|
117 |
+
[
|
118 |
+
"나 너무 화나!",
|
119 |
+
"부정"
|
120 |
+
],
|
121 |
+
[
|
122 |
+
"나 싸울 준비됐어!",
|
123 |
+
"부정"
|
124 |
+
],
|
125 |
+
[
|
126 |
+
"그만 좀 해!",
|
127 |
+
"부정"
|
128 |
+
],
|
129 |
+
[
|
130 |
+
"내게 장난치지마!",
|
131 |
+
"부정"
|
132 |
+
],
|
133 |
+
[
|
134 |
+
"나 지금 너무 짜증나!",
|
135 |
+
"부정"
|
136 |
+
],
|
137 |
+
[
|
138 |
+
"나 지금 안 좋아!",
|
139 |
+
"부정"
|
140 |
+
],
|
141 |
+
[
|
142 |
+
"다가오지마!",
|
143 |
+
"부정"
|
144 |
+
],
|
145 |
+
[
|
146 |
+
"너에게 화난 거야!",
|
147 |
+
"부정"
|
148 |
+
],
|
149 |
+
[
|
150 |
+
"좀 멀리 가!",
|
151 |
+
"부정"
|
152 |
+
],
|
153 |
+
[
|
154 |
+
"나 싸우려고 준비됐어!",
|
155 |
+
"부정"
|
156 |
+
],
|
157 |
+
[
|
158 |
+
"한번 더 건드리면 물어버릴거야!!!",
|
159 |
+
"부정"
|
160 |
+
],
|
161 |
+
[
|
162 |
+
"나한테 이렇게 위협적으로 다가오지마!",
|
163 |
+
"부정"
|
164 |
+
],
|
165 |
+
[
|
166 |
+
"나의 영역을 침범하면 안돼! 이해해줘!",
|
167 |
+
"부정"
|
168 |
+
],
|
169 |
+
[
|
170 |
+
"그만 좀 귀찮게 해! 내가 분명히 경고했잖아!",
|
171 |
+
"부정"
|
172 |
+
],
|
173 |
+
[
|
174 |
+
"불편해, 물러서줘.",
|
175 |
+
"부정"
|
176 |
+
],
|
177 |
+
[
|
178 |
+
"경고하는 거야, 가까이 오지 마.",
|
179 |
+
"부정"
|
180 |
+
],
|
181 |
+
[
|
182 |
+
"좀 너무 가까워, 거리 좀 둬.",
|
183 |
+
"부정"
|
184 |
+
],
|
185 |
+
[
|
186 |
+
"나를 방해하지 마, 신경 써줘.",
|
187 |
+
"부정"
|
188 |
+
],
|
189 |
+
[
|
190 |
+
"내가 불편해, 거리 좀 두고 있어.",
|
191 |
+
"부정"
|
192 |
+
],
|
193 |
+
[
|
194 |
+
"가까이 오지 마.",
|
195 |
+
"부정"
|
196 |
+
],
|
197 |
+
[
|
198 |
+
"나를 방해하지 마, 존중해줘. Respect Me!!",
|
199 |
+
"부정"
|
200 |
+
]
|
201 |
+
],
|
202 |
+
"howl": [
|
203 |
+
[
|
204 |
+
"나 여기있어, 봐줘!",
|
205 |
+
"중립"
|
206 |
+
],
|
207 |
+
[
|
208 |
+
"너 어디 갔어?!",
|
209 |
+
"중립"
|
210 |
+
],
|
211 |
+
[
|
212 |
+
"나 너무 외로워!",
|
213 |
+
"중립"
|
214 |
+
],
|
215 |
+
[
|
216 |
+
"이리 와봐, 나 있는 곳으로!",
|
217 |
+
"중립"
|
218 |
+
],
|
219 |
+
[
|
220 |
+
"너 없으면 너무 심심해!",
|
221 |
+
"중립"
|
222 |
+
],
|
223 |
+
[
|
224 |
+
"나도 같이 가고 싶어!",
|
225 |
+
"중립"
|
226 |
+
],
|
227 |
+
[
|
228 |
+
"나 심심해",
|
229 |
+
"중립"
|
230 |
+
],
|
231 |
+
[
|
232 |
+
"어디야? 나 찾아봐!",
|
233 |
+
"중립"
|
234 |
+
],
|
235 |
+
[
|
236 |
+
"언제 오려고 그래?",
|
237 |
+
"중립"
|
238 |
+
],
|
239 |
+
[
|
240 |
+
"나는 여기 있는데!",
|
241 |
+
"중립"
|
242 |
+
],
|
243 |
+
[
|
244 |
+
"빨리 돌아와줘!",
|
245 |
+
"중립"
|
246 |
+
],
|
247 |
+
[
|
248 |
+
"나 혼자 남겨두지 마!",
|
249 |
+
"중립"
|
250 |
+
],
|
251 |
+
[
|
252 |
+
"나 여기있어!! 나좀 봐줘!!!",
|
253 |
+
"중립"
|
254 |
+
],
|
255 |
+
[
|
256 |
+
"나 잘 보고 있어? 나 괜찮아?",
|
257 |
+
"중립"
|
258 |
+
],
|
259 |
+
[
|
260 |
+
"주인, 나 좀 안아줄 수 있을까?",
|
261 |
+
"중립"
|
262 |
+
],
|
263 |
+
[
|
264 |
+
"외로워, 보고 싶어.",
|
265 |
+
"중립"
|
266 |
+
],
|
267 |
+
[
|
268 |
+
"다른 강아지와 '합창'하고 싶어.",
|
269 |
+
"중립"
|
270 |
+
],
|
271 |
+
[
|
272 |
+
"너를 보고싶어, 언제 와?",
|
273 |
+
"중립"
|
274 |
+
],
|
275 |
+
[
|
276 |
+
"무언가 알려고 하는 중이야.",
|
277 |
+
"중립"
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"다른 강아지들이랑 노래하고 싶어.",
|
281 |
+
"긍정"
|
282 |
+
]
|
283 |
+
],
|
284 |
+
"panting": [
|
285 |
+
[
|
286 |
+
"더워~ 에어컨 켜줘.",
|
287 |
+
"부정"
|
288 |
+
],
|
289 |
+
[
|
290 |
+
"운동 후 휴식 중이야.",
|
291 |
+
"중립"
|
292 |
+
],
|
293 |
+
[
|
294 |
+
"숨이 차, 좀 도와줘.",
|
295 |
+
"부정"
|
296 |
+
],
|
297 |
+
[
|
298 |
+
"휴식이 필요해, 좀 쉬자.",
|
299 |
+
"부정"
|
300 |
+
],
|
301 |
+
[
|
302 |
+
"너무 더워, 물 좀 줄래?",
|
303 |
+
"부정"
|
304 |
+
],
|
305 |
+
[
|
306 |
+
"너무 더워, 바람 좀 쐬자.",
|
307 |
+
"부정"
|
308 |
+
],
|
309 |
+
[
|
310 |
+
"힘들게 운동했어, 휴식 좀!",
|
311 |
+
"부정"
|
312 |
+
],
|
313 |
+
[
|
314 |
+
"숨이 차, 쉬는 시간이 필요해.",
|
315 |
+
"부정"
|
316 |
+
],
|
317 |
+
[
|
318 |
+
"휴식이 필요해, 조용히 좀...",
|
319 |
+
"부정"
|
320 |
+
],
|
321 |
+
[
|
322 |
+
"물 좀 마시고 싶어, 줄래?",
|
323 |
+
"중립"
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"많이 뛰어서 힘들어, 휴식이 필요해.",
|
327 |
+
"부정"
|
328 |
+
],
|
329 |
+
[
|
330 |
+
"휴식이 필요해, 좀 더 쉬자.",
|
331 |
+
"중립"
|
332 |
+
],
|
333 |
+
[
|
334 |
+
"너무 더워서 물 좀 마시고 싶어.",
|
335 |
+
"중립"
|
336 |
+
],
|
337 |
+
[
|
338 |
+
"좀 더운 �� 같아, 바람 좀 쐬고 싶어.",
|
339 |
+
"중립"
|
340 |
+
],
|
341 |
+
[
|
342 |
+
"지금 좀 쉴 시간이 필요해, 잠시만 기다려.",
|
343 |
+
"중립"
|
344 |
+
],
|
345 |
+
[
|
346 |
+
"지금 진정할 시간이 필요해!!!",
|
347 |
+
"중립"
|
348 |
+
],
|
349 |
+
[
|
350 |
+
"나 지금 너무 신나",
|
351 |
+
"긍정"
|
352 |
+
],
|
353 |
+
[
|
354 |
+
"너랑 놀면 더 재밌을 것 같아",
|
355 |
+
"긍정"
|
356 |
+
],
|
357 |
+
[
|
358 |
+
"나랑 놀지 않을래?",
|
359 |
+
"긍정"
|
360 |
+
],
|
361 |
+
[
|
362 |
+
"밖에 나가면 재미난 일이 있을 것 같아!",
|
363 |
+
"긍정"
|
364 |
+
],
|
365 |
+
[
|
366 |
+
"오늘은 무슨 일이 있을까? 좋은 일이 생길 것 같아!",
|
367 |
+
"긍정"
|
368 |
+
],
|
369 |
+
[
|
370 |
+
"세상 모든 것들이 반가워~",
|
371 |
+
"긍정"
|
372 |
+
],
|
373 |
+
[
|
374 |
+
"너랑 친해지고 싶어~",
|
375 |
+
"긍정"
|
376 |
+
],
|
377 |
+
[
|
378 |
+
"오늘 기분 아주 나이스~",
|
379 |
+
"긍정"
|
380 |
+
],
|
381 |
+
[
|
382 |
+
"세상에서 제일 좋아!!",
|
383 |
+
"긍정"
|
384 |
+
],
|
385 |
+
[
|
386 |
+
"나 지금 기분이가 좋아~",
|
387 |
+
"긍정"
|
388 |
+
],
|
389 |
+
[
|
390 |
+
"너랑 놀고싶어~",
|
391 |
+
"긍정"
|
392 |
+
],
|
393 |
+
[
|
394 |
+
"오늘 되게 행복한 하루다~",
|
395 |
+
"긍정"
|
396 |
+
],
|
397 |
+
[
|
398 |
+
"오늘 내 생일인가? 너무 행복해><",
|
399 |
+
"긍정"
|
400 |
+
],
|
401 |
+
[
|
402 |
+
"만나서 반가워",
|
403 |
+
"긍정"
|
404 |
+
],
|
405 |
+
[
|
406 |
+
"너는 이름이 뭐니?",
|
407 |
+
"긍정"
|
408 |
+
],
|
409 |
+
[
|
410 |
+
"난 너가 좋아!!",
|
411 |
+
"긍정"
|
412 |
+
],
|
413 |
+
[
|
414 |
+
"나 매우 재밌어",
|
415 |
+
"긍정"
|
416 |
+
],
|
417 |
+
[
|
418 |
+
"나랑 같이 놀러 나가자",
|
419 |
+
"긍정"
|
420 |
+
]
|
421 |
+
],
|
422 |
+
"whimper": [
|
423 |
+
[
|
424 |
+
"나 너무 두려워",
|
425 |
+
"부정"
|
426 |
+
],
|
427 |
+
[
|
428 |
+
"나 지금 너무 외로워",
|
429 |
+
"부정"
|
430 |
+
],
|
431 |
+
[
|
432 |
+
"나 너무 슬퍼",
|
433 |
+
"부정"
|
434 |
+
],
|
435 |
+
[
|
436 |
+
"나 좀 안아줘",
|
437 |
+
"부정"
|
438 |
+
],
|
439 |
+
[
|
440 |
+
"나 지금 너무 불편해",
|
441 |
+
"부정"
|
442 |
+
],
|
443 |
+
[
|
444 |
+
"나 너무 피곤해",
|
445 |
+
"부정"
|
446 |
+
],
|
447 |
+
[
|
448 |
+
"조금만 더 안아줘",
|
449 |
+
"부정"
|
450 |
+
],
|
451 |
+
[
|
452 |
+
"나 좀 위로해줘",
|
453 |
+
"부정"
|
454 |
+
],
|
455 |
+
[
|
456 |
+
"나 기다리는 중",
|
457 |
+
"부정"
|
458 |
+
],
|
459 |
+
[
|
460 |
+
"외로워서 눈물이 나",
|
461 |
+
"부정"
|
462 |
+
],
|
463 |
+
[
|
464 |
+
"나 상처받았어, 너무 두려워...ㅠㅡㅠ",
|
465 |
+
"부정"
|
466 |
+
],
|
467 |
+
[
|
468 |
+
"나 놀래쪄ㅠㅡㅠ 힝구힝구..",
|
469 |
+
"부정"
|
470 |
+
],
|
471 |
+
[
|
472 |
+
"무셔워... 안아죠~~~",
|
473 |
+
"부정"
|
474 |
+
],
|
475 |
+
[
|
476 |
+
"너무 슬퍼서 맘이 아파... 안아줘...",
|
477 |
+
"부정"
|
478 |
+
],
|
479 |
+
[
|
480 |
+
"나 기분이 너무 안 좋아... 어떻게 해줄래?",
|
481 |
+
"부정"
|
482 |
+
],
|
483 |
+
[
|
484 |
+
"힝...미안해...",
|
485 |
+
"부정"
|
486 |
+
],
|
487 |
+
[
|
488 |
+
"불안해, 곁에 있어줘.",
|
489 |
+
"부정"
|
490 |
+
],
|
491 |
+
[
|
492 |
+
"밖으로 나가고 싶어.",
|
493 |
+
"중립"
|
494 |
+
],
|
495 |
+
[
|
496 |
+
"미안해, 실수했어.",
|
497 |
+
"부정"
|
498 |
+
],
|
499 |
+
[
|
500 |
+
"너무 슬퍼, 위로 좀 해줘.",
|
501 |
+
"부정"
|
502 |
+
],
|
503 |
+
[
|
504 |
+
"스트레스 받았어, 도와줘.",
|
505 |
+
"부정"
|
506 |
+
],
|
507 |
+
[
|
508 |
+
"내가 불안해, 붙어있어줘.",
|
509 |
+
"부정"
|
510 |
+
],
|
511 |
+
[
|
512 |
+
"너무 외로워, 애정을 보여줘.",
|
513 |
+
"부정"
|
514 |
+
],
|
515 |
+
[
|
516 |
+
"산책 좀 가고 싶어.",
|
517 |
+
"중립"
|
518 |
+
],
|
519 |
+
[
|
520 |
+
"정말 슬퍼, 안아줘.",
|
521 |
+
"부정"
|
522 |
+
],
|
523 |
+
[
|
524 |
+
"스트레스가 너무 많아, 안아줘.",
|
525 |
+
"부정"
|
526 |
+
]
|
527 |
+
]
|
528 |
+
}
|
text_mapping_example.ipynb
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"id": "8f925fb7-86ba-487f-ab85-88754d777860",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import json\n",
|
13 |
+
"with open(\"text/text_label.json\",\"r\",encoding='utf-8') as f:\n",
|
14 |
+
" text_label = json.load(f)"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 14,
|
20 |
+
"id": "d2c0a048-1db7-4236-9f26-539ed31d3d27",
|
21 |
+
"metadata": {
|
22 |
+
"tags": []
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import random\n",
|
27 |
+
"random.seed(0)\n",
|
28 |
+
"def post_process(model_output,text_label):\n",
|
29 |
+
" text_list = text_label[model_output]\n",
|
30 |
+
" text,sent = random.sample(text_list,1)[0]\n",
|
31 |
+
" return {'label' : model_output,\n",
|
32 |
+
" 'text' : text,\n",
|
33 |
+
" 'sentiment' : sent}"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 15,
|
39 |
+
"id": "f8ca0ad8-bc0c-4766-8e13-fe093c5290df",
|
40 |
+
"metadata": {
|
41 |
+
"tags": []
|
42 |
+
},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"text/plain": [
|
47 |
+
"{'label': 'bark', 'text': '아니야, 아니야!', 'sentiment': '부정'}"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"execution_count": 15,
|
51 |
+
"metadata": {},
|
52 |
+
"output_type": "execute_result"
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"model_output = 'bark'\n",
|
57 |
+
"post_process(model_output,text_label)"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"id": "da690a64-4dea-4b2a-89c1-23ea8bad955c",
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": []
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"kernelspec": {
|
71 |
+
"display_name": "Python 3 (ipykernel)",
|
72 |
+
"language": "python",
|
73 |
+
"name": "python3"
|
74 |
+
},
|
75 |
+
"language_info": {
|
76 |
+
"codemirror_mode": {
|
77 |
+
"name": "ipython",
|
78 |
+
"version": 3
|
79 |
+
},
|
80 |
+
"file_extension": ".py",
|
81 |
+
"mimetype": "text/x-python",
|
82 |
+
"name": "python",
|
83 |
+
"nbconvert_exporter": "python",
|
84 |
+
"pygments_lexer": "ipython3",
|
85 |
+
"version": "3.8.16"
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"nbformat": 4,
|
89 |
+
"nbformat_minor": 5
|
90 |
+
}
|