Gainward777 commited on
Commit
44c2095
·
verified ·
1 Parent(s): 8673638

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ output_sample.mp4 filter=lfs diff=lfs merge=lfs -text
Demo.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ st.title('AI Fitness Trainer: Squats Analysis')
5
+
6
+
7
+ recorded_file = 'output_sample.mp4'
8
+ sample_vid = st.empty()
9
+ sample_vid.video(recorded_file)
10
+
11
+
12
+
13
+
14
+
15
+
16
+
__init__.py ADDED
File without changes
output_sample.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc86e0ec97b3556988004a9757c57e826b9551973523baf95cbba143d7a3e50
3
+ size 2542820
pages/1_Live_Stream.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import av
2
+ import os
3
+ import sys
4
+ import streamlit as st
5
+ from streamlit_webrtc import VideoHTMLAttributes, webrtc_streamer
6
+ from aiortc.contrib.media import MediaRecorder
7
+
8
+
9
+ BASE_DIR = os.path.abspath(os.path.join(__file__, '../../'))
10
+ sys.path.append(BASE_DIR)
11
+
12
+
13
+ from utils import get_mediapipe_pose
14
+ from process_frame import ProcessFrame
15
+ from thresholds import get_thresholds_beginner, get_thresholds_pro
16
+
17
+
18
+ st.title('AI Fitness Trainer: Squats Analysis')
19
+
20
+ mode = st.radio('Select Mode', ['Beginner', 'Pro'], horizontal=True)
21
+
22
+ thresholds = None
23
+
24
+ if mode == 'Beginner':
25
+ thresholds = get_thresholds_beginner()
26
+
27
+ elif mode == 'Pro':
28
+ thresholds = get_thresholds_pro()
29
+
30
+
31
+ live_process_frame = ProcessFrame(thresholds=thresholds, flip_frame=True)
32
+ # Initialize face mesh solution
33
+ pose = get_mediapipe_pose()
34
+
35
+
36
+ if 'download' not in st.session_state:
37
+ st.session_state['download'] = False
38
+
39
+ output_video_file = f'output_live.flv'
40
+
41
+
42
+
43
+ def video_frame_callback(frame: av.VideoFrame):
44
+ frame = frame.to_ndarray(format="rgb24") # Decode and get RGB frame
45
+ frame, _ = live_process_frame.process(frame, pose) # Process frame
46
+ return av.VideoFrame.from_ndarray(frame, format="rgb24") # Encode and return BGR frame
47
+
48
+
49
+ def out_recorder_factory() -> MediaRecorder:
50
+ return MediaRecorder(output_video_file)
51
+
52
+
53
+ ctx = webrtc_streamer(
54
+ key="Squats-pose-analysis",
55
+ video_frame_callback=video_frame_callback,
56
+ rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}, # Add this config
57
+ media_stream_constraints={"video": {"width": {'min':480, 'ideal':480}}, "audio": False},
58
+ video_html_attrs=VideoHTMLAttributes(autoPlay=True, controls=False, muted=False),
59
+ out_recorder_factory=out_recorder_factory
60
+ )
61
+
62
+
63
+ download_button = st.empty()
64
+
65
+ if os.path.exists(output_video_file):
66
+ with open(output_video_file, 'rb') as op_vid:
67
+ download = download_button.download_button('Download Video', data = op_vid, file_name='output_live.flv')
68
+
69
+ if download:
70
+ st.session_state['download'] = True
71
+
72
+
73
+
74
+ if os.path.exists(output_video_file) and st.session_state['download']:
75
+ os.remove(output_video_file)
76
+ st.session_state['download'] = False
77
+ download_button.empty()
78
+
79
+
80
+
81
+
82
+
pages/2_ Upload_Video.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import av
2
+ import os
3
+ import sys
4
+ import streamlit as st
5
+ import cv2
6
+ import tempfile
7
+
8
+
9
+ BASE_DIR = os.path.abspath(os.path.join(__file__, '../../'))
10
+ sys.path.append(BASE_DIR)
11
+
12
+
13
+ from utils import get_mediapipe_pose
14
+ from process_frame import ProcessFrame
15
+ from thresholds import get_thresholds_beginner, get_thresholds_pro
16
+
17
+
18
+
19
+ st.title('AI Fitness Trainer: Squats Analysis')
20
+
21
+ mode = st.radio('Select Mode', ['Beginner', 'Pro'], horizontal=True)
22
+
23
+
24
+
25
+ thresholds = None
26
+
27
+ if mode == 'Beginner':
28
+ thresholds = get_thresholds_beginner()
29
+
30
+ elif mode == 'Pro':
31
+ thresholds = get_thresholds_pro()
32
+
33
+
34
+
35
+ upload_process_frame = ProcessFrame(thresholds=thresholds)
36
+
37
+ # Initialize face mesh solution
38
+ pose = get_mediapipe_pose()
39
+
40
+
41
+ download = None
42
+
43
+ if 'download' not in st.session_state:
44
+ st.session_state['download'] = False
45
+
46
+
47
+ output_video_file = f'output_recorded.mp4'
48
+
49
+ if os.path.exists(output_video_file):
50
+ os.remove(output_video_file)
51
+
52
+
53
+ with st.form('Upload', clear_on_submit=True):
54
+ up_file = st.file_uploader("Upload a Video", ['mp4','mov', 'avi'])
55
+ uploaded = st.form_submit_button("Upload")
56
+
57
+ stframe = st.empty()
58
+
59
+ ip_vid_str = '<p style="font-family:Helvetica; font-weight: bold; font-size: 16px;">Input Video</p>'
60
+ warning_str = '<p style="font-family:Helvetica; font-weight: bold; color: Red; font-size: 17px;">Please Upload a Video first!!!</p>'
61
+
62
+ warn = st.empty()
63
+
64
+
65
+ download_button = st.empty()
66
+
67
+ if up_file and uploaded:
68
+
69
+ download_button.empty()
70
+ tfile = tempfile.NamedTemporaryFile(delete=False)
71
+
72
+ try:
73
+ warn.empty()
74
+ tfile.write(up_file.read())
75
+
76
+ vf = cv2.VideoCapture(tfile.name)
77
+
78
+ # --------------------- Write the processed video frame. --------------------
79
+ fps = int(vf.get(cv2.CAP_PROP_FPS))
80
+ width = int(vf.get(cv2.CAP_PROP_FRAME_WIDTH))
81
+ height = int(vf.get(cv2.CAP_PROP_FRAME_HEIGHT))
82
+ frame_size = (width, height)
83
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
84
+ video_output = cv2.VideoWriter(output_video_file, fourcc, fps, frame_size)
85
+ # -----------------------------------------------------------------------------
86
+
87
+
88
+ txt = st.sidebar.markdown(ip_vid_str, unsafe_allow_html=True)
89
+ ip_video = st.sidebar.video(tfile.name)
90
+
91
+ while vf.isOpened():
92
+ ret, frame = vf.read()
93
+ if not ret:
94
+ break
95
+
96
+ # convert frame from BGR to RGB before processing it.
97
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
98
+ out_frame, _ = upload_process_frame.process(frame, pose)
99
+ stframe.image(out_frame)
100
+ video_output.write(out_frame[...,::-1])
101
+
102
+
103
+ vf.release()
104
+ video_output.release()
105
+ stframe.empty()
106
+ ip_video.empty()
107
+ txt.empty()
108
+ tfile.close()
109
+
110
+ except AttributeError:
111
+ warn.markdown(warning_str, unsafe_allow_html=True)
112
+
113
+
114
+
115
+ if os.path.exists(output_video_file):
116
+ with open(output_video_file, 'rb') as op_vid:
117
+ download = download_button.download_button('Download Video', data = op_vid, file_name='output_recorded.mp4')
118
+
119
+ if download:
120
+ st.session_state['download'] = True
121
+
122
+
123
+
124
+ if os.path.exists(output_video_file) and st.session_state['download']:
125
+ os.remove(output_video_file)
126
+ st.session_state['download'] = False
127
+ download_button.empty()
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
process_frame.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import cv2
3
+ import numpy as np
4
+ from utils import find_angle, get_landmark_features, draw_text, draw_dotted_line
5
+
6
+
7
+ class ProcessFrame:
8
+ def __init__(self, thresholds, flip_frame = False):
9
+
10
+ # Set if frame should be flipped or not.
11
+ self.flip_frame = flip_frame
12
+
13
+ # self.thresholds
14
+ self.thresholds = thresholds
15
+
16
+ # Font type.
17
+ self.font = cv2.FONT_HERSHEY_SIMPLEX
18
+
19
+ # line type
20
+ self.linetype = cv2.LINE_AA
21
+
22
+ # set radius to draw arc
23
+ self.radius = 20
24
+
25
+ # Colors in BGR format.
26
+ self.COLORS = {
27
+ 'blue' : (0, 127, 255),
28
+ 'red' : (255, 50, 50),
29
+ 'green' : (0, 255, 127),
30
+ 'light_green': (100, 233, 127),
31
+ 'yellow' : (255, 255, 0),
32
+ 'magenta' : (255, 0, 255),
33
+ 'white' : (255,255,255),
34
+ 'cyan' : (0, 255, 255),
35
+ 'light_blue' : (102, 204, 255)
36
+ }
37
+
38
+
39
+
40
+ # Dictionary to maintain the various landmark features.
41
+ self.dict_features = {}
42
+ self.left_features = {
43
+ 'shoulder': 11,
44
+ 'elbow' : 13,
45
+ 'wrist' : 15,
46
+ 'hip' : 23,
47
+ 'knee' : 25,
48
+ 'ankle' : 27,
49
+ 'foot' : 31
50
+ }
51
+
52
+ self.right_features = {
53
+ 'shoulder': 12,
54
+ 'elbow' : 14,
55
+ 'wrist' : 16,
56
+ 'hip' : 24,
57
+ 'knee' : 26,
58
+ 'ankle' : 28,
59
+ 'foot' : 32
60
+ }
61
+
62
+ self.dict_features['left'] = self.left_features
63
+ self.dict_features['right'] = self.right_features
64
+ self.dict_features['nose'] = 0
65
+
66
+
67
+ # For tracking counters and sharing states in and out of callbacks.
68
+ self.state_tracker = {
69
+ 'state_seq': [],
70
+
71
+ 'start_inactive_time': time.perf_counter(),
72
+ 'start_inactive_time_front': time.perf_counter(),
73
+ 'INACTIVE_TIME': 0.0,
74
+ 'INACTIVE_TIME_FRONT': 0.0,
75
+
76
+ # 0 --> Bend Backwards, 1 --> Bend Forward, 2 --> Keep shin straight, 3 --> Deep squat
77
+ 'DISPLAY_TEXT' : np.full((4,), False),
78
+ 'COUNT_FRAMES' : np.zeros((4,), dtype=np.int64),
79
+
80
+ 'LOWER_HIPS': False,
81
+
82
+ 'INCORRECT_POSTURE': False,
83
+
84
+ 'prev_state': None,
85
+ 'curr_state':None,
86
+
87
+ 'SQUAT_COUNT': 0,
88
+ 'IMPROPER_SQUAT':0
89
+
90
+ }
91
+
92
+ self.FEEDBACK_ID_MAP = {
93
+ 0: ('BEND BACKWARDS', 215, (0, 153, 255)),
94
+ 1: ('BEND FORWARD', 215, (0, 153, 255)),
95
+ 2: ('KNEE FALLING OVER TOE', 170, (255, 80, 80)),
96
+ 3: ('SQUAT TOO DEEP', 125, (255, 80, 80))
97
+ }
98
+
99
+
100
+
101
+
102
+ def _get_state(self, knee_angle):
103
+
104
+ knee = None
105
+
106
+ if self.thresholds['HIP_KNEE_VERT']['NORMAL'][0] <= knee_angle <= self.thresholds['HIP_KNEE_VERT']['NORMAL'][1]:
107
+ knee = 1
108
+ elif self.thresholds['HIP_KNEE_VERT']['TRANS'][0] <= knee_angle <= self.thresholds['HIP_KNEE_VERT']['TRANS'][1]:
109
+ knee = 2
110
+ elif self.thresholds['HIP_KNEE_VERT']['PASS'][0] <= knee_angle <= self.thresholds['HIP_KNEE_VERT']['PASS'][1]:
111
+ knee = 3
112
+
113
+ return f's{knee}' if knee else None
114
+
115
+
116
+
117
+
118
+ def _update_state_sequence(self, state):
119
+
120
+ if state == 's2':
121
+ if (('s3' not in self.state_tracker['state_seq']) and (self.state_tracker['state_seq'].count('s2'))==0) or \
122
+ (('s3' in self.state_tracker['state_seq']) and (self.state_tracker['state_seq'].count('s2')==1)):
123
+ self.state_tracker['state_seq'].append(state)
124
+
125
+
126
+ elif state == 's3':
127
+ if (state not in self.state_tracker['state_seq']) and 's2' in self.state_tracker['state_seq']:
128
+ self.state_tracker['state_seq'].append(state)
129
+
130
+
131
+
132
+
133
+ def _show_feedback(self, frame, c_frame, dict_maps, lower_hips_disp):
134
+
135
+
136
+ if lower_hips_disp:
137
+ draw_text(
138
+ frame,
139
+ 'LOWER YOUR HIPS',
140
+ pos=(30, 80),
141
+ text_color=(0, 0, 0),
142
+ font_scale=0.6,
143
+ text_color_bg=(255, 255, 0)
144
+ )
145
+
146
+ for idx in np.where(c_frame)[0]:
147
+ draw_text(
148
+ frame,
149
+ dict_maps[idx][0],
150
+ pos=(30, dict_maps[idx][1]),
151
+ text_color=(255, 255, 230),
152
+ font_scale=0.6,
153
+ text_color_bg=dict_maps[idx][2]
154
+ )
155
+
156
+ return frame
157
+
158
+
159
+
160
+ def process(self, frame: np.array, pose):
161
+ play_sound = None
162
+
163
+
164
+ frame_height, frame_width, _ = frame.shape
165
+
166
+ # Process the image.
167
+ keypoints = pose.process(frame)
168
+
169
+ if keypoints.pose_landmarks:
170
+ ps_lm = keypoints.pose_landmarks
171
+
172
+ nose_coord = get_landmark_features(ps_lm.landmark, self.dict_features, 'nose', frame_width, frame_height)
173
+ left_shldr_coord, left_elbow_coord, left_wrist_coord, left_hip_coord, left_knee_coord, left_ankle_coord, left_foot_coord = \
174
+ get_landmark_features(ps_lm.landmark, self.dict_features, 'left', frame_width, frame_height)
175
+ right_shldr_coord, right_elbow_coord, right_wrist_coord, right_hip_coord, right_knee_coord, right_ankle_coord, right_foot_coord = \
176
+ get_landmark_features(ps_lm.landmark, self.dict_features, 'right', frame_width, frame_height)
177
+
178
+ offset_angle = find_angle(left_shldr_coord, right_shldr_coord, nose_coord)
179
+
180
+ if offset_angle > self.thresholds['OFFSET_THRESH']:
181
+
182
+ display_inactivity = False
183
+
184
+ end_time = time.perf_counter()
185
+ self.state_tracker['INACTIVE_TIME_FRONT'] += end_time - self.state_tracker['start_inactive_time_front']
186
+ self.state_tracker['start_inactive_time_front'] = end_time
187
+
188
+ if self.state_tracker['INACTIVE_TIME_FRONT'] >= self.thresholds['INACTIVE_THRESH']:
189
+ self.state_tracker['SQUAT_COUNT'] = 0
190
+ self.state_tracker['IMPROPER_SQUAT'] = 0
191
+ display_inactivity = True
192
+
193
+ cv2.circle(frame, nose_coord, 7, self.COLORS['white'], -1)
194
+ cv2.circle(frame, left_shldr_coord, 7, self.COLORS['yellow'], -1)
195
+ cv2.circle(frame, right_shldr_coord, 7, self.COLORS['magenta'], -1)
196
+
197
+ if self.flip_frame:
198
+ frame = cv2.flip(frame, 1)
199
+
200
+ if display_inactivity:
201
+ # cv2.putText(frame, 'Resetting SQUAT_COUNT due to inactivity!!!', (10, frame_height - 90),
202
+ # self.font, 0.5, self.COLORS['blue'], 2, lineType=self.linetype)
203
+ play_sound = 'reset_counters'
204
+ self.state_tracker['INACTIVE_TIME_FRONT'] = 0.0
205
+ self.state_tracker['start_inactive_time_front'] = time.perf_counter()
206
+
207
+ draw_text(
208
+ frame,
209
+ "CORRECT: " + str(self.state_tracker['SQUAT_COUNT']),
210
+ pos=(int(frame_width*0.68), 30),
211
+ text_color=(255, 255, 230),
212
+ font_scale=0.7,
213
+ text_color_bg=(18, 185, 0)
214
+ )
215
+
216
+
217
+ draw_text(
218
+ frame,
219
+ "INCORRECT: " + str(self.state_tracker['IMPROPER_SQUAT']),
220
+ pos=(int(frame_width*0.68), 80),
221
+ text_color=(255, 255, 230),
222
+ font_scale=0.7,
223
+ text_color_bg=(221, 0, 0),
224
+
225
+ )
226
+
227
+
228
+ draw_text(
229
+ frame,
230
+ 'CAMERA NOT ALIGNED PROPERLY!!!',
231
+ pos=(30, frame_height-60),
232
+ text_color=(255, 255, 230),
233
+ font_scale=0.65,
234
+ text_color_bg=(255, 153, 0),
235
+ )
236
+
237
+
238
+ draw_text(
239
+ frame,
240
+ 'OFFSET ANGLE: '+str(offset_angle),
241
+ pos=(30, frame_height-30),
242
+ text_color=(255, 255, 230),
243
+ font_scale=0.65,
244
+ text_color_bg=(255, 153, 0),
245
+ )
246
+
247
+ # Reset inactive times for side view.
248
+ self.state_tracker['start_inactive_time'] = time.perf_counter()
249
+ self.state_tracker['INACTIVE_TIME'] = 0.0
250
+ self.state_tracker['prev_state'] = None
251
+ self.state_tracker['curr_state'] = None
252
+
253
+ # Camera is aligned properly.
254
+ else:
255
+
256
+ self.state_tracker['INACTIVE_TIME_FRONT'] = 0.0
257
+ self.state_tracker['start_inactive_time_front'] = time.perf_counter()
258
+
259
+
260
+ dist_l_sh_hip = abs(left_foot_coord[1]- left_shldr_coord[1])
261
+ dist_r_sh_hip = abs(right_foot_coord[1] - right_shldr_coord)[1]
262
+
263
+ shldr_coord = None
264
+ elbow_coord = None
265
+ wrist_coord = None
266
+ hip_coord = None
267
+ knee_coord = None
268
+ ankle_coord = None
269
+ foot_coord = None
270
+
271
+ if dist_l_sh_hip > dist_r_sh_hip:
272
+ shldr_coord = left_shldr_coord
273
+ elbow_coord = left_elbow_coord
274
+ wrist_coord = left_wrist_coord
275
+ hip_coord = left_hip_coord
276
+ knee_coord = left_knee_coord
277
+ ankle_coord = left_ankle_coord
278
+ foot_coord = left_foot_coord
279
+
280
+ multiplier = -1
281
+
282
+
283
+ else:
284
+ shldr_coord = right_shldr_coord
285
+ elbow_coord = right_elbow_coord
286
+ wrist_coord = right_wrist_coord
287
+ hip_coord = right_hip_coord
288
+ knee_coord = right_knee_coord
289
+ ankle_coord = right_ankle_coord
290
+ foot_coord = right_foot_coord
291
+
292
+ multiplier = 1
293
+
294
+
295
+ # ------------------- Verical Angle calculation --------------
296
+
297
+ hip_vertical_angle = find_angle(shldr_coord, np.array([hip_coord[0], 0]), hip_coord)
298
+ cv2.ellipse(frame, hip_coord, (30, 30),
299
+ angle = 0, startAngle = -90, endAngle = -90+multiplier*hip_vertical_angle,
300
+ color = self.COLORS['white'], thickness = 3, lineType = self.linetype)
301
+
302
+ draw_dotted_line(frame, hip_coord, start=hip_coord[1]-80, end=hip_coord[1]+20, line_color=self.COLORS['blue'])
303
+
304
+
305
+
306
+
307
+ knee_vertical_angle = find_angle(hip_coord, np.array([knee_coord[0], 0]), knee_coord)
308
+ cv2.ellipse(frame, knee_coord, (20, 20),
309
+ angle = 0, startAngle = -90, endAngle = -90-multiplier*knee_vertical_angle,
310
+ color = self.COLORS['white'], thickness = 3, lineType = self.linetype)
311
+
312
+ draw_dotted_line(frame, knee_coord, start=knee_coord[1]-50, end=knee_coord[1]+20, line_color=self.COLORS['blue'])
313
+
314
+
315
+
316
+ ankle_vertical_angle = find_angle(knee_coord, np.array([ankle_coord[0], 0]), ankle_coord)
317
+ cv2.ellipse(frame, ankle_coord, (30, 30),
318
+ angle = 0, startAngle = -90, endAngle = -90 + multiplier*ankle_vertical_angle,
319
+ color = self.COLORS['white'], thickness = 3, lineType=self.linetype)
320
+
321
+ draw_dotted_line(frame, ankle_coord, start=ankle_coord[1]-50, end=ankle_coord[1]+20, line_color=self.COLORS['blue'])
322
+
323
+ # ------------------------------------------------------------
324
+
325
+
326
+ # Join landmarks.
327
+ cv2.line(frame, shldr_coord, elbow_coord, self.COLORS['light_blue'], 4, lineType=self.linetype)
328
+ cv2.line(frame, wrist_coord, elbow_coord, self.COLORS['light_blue'], 4, lineType=self.linetype)
329
+ cv2.line(frame, shldr_coord, hip_coord, self.COLORS['light_blue'], 4, lineType=self.linetype)
330
+ cv2.line(frame, knee_coord, hip_coord, self.COLORS['light_blue'], 4, lineType=self.linetype)
331
+ cv2.line(frame, ankle_coord, knee_coord,self.COLORS['light_blue'], 4, lineType=self.linetype)
332
+ cv2.line(frame, ankle_coord, foot_coord, self.COLORS['light_blue'], 4, lineType=self.linetype)
333
+
334
+ # Plot landmark points
335
+ cv2.circle(frame, shldr_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
336
+ cv2.circle(frame, elbow_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
337
+ cv2.circle(frame, wrist_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
338
+ cv2.circle(frame, hip_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
339
+ cv2.circle(frame, knee_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
340
+ cv2.circle(frame, ankle_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
341
+ cv2.circle(frame, foot_coord, 7, self.COLORS['yellow'], -1, lineType=self.linetype)
342
+
343
+
344
+
345
+ current_state = self._get_state(int(knee_vertical_angle))
346
+ self.state_tracker['curr_state'] = current_state
347
+ self._update_state_sequence(current_state)
348
+
349
+
350
+
351
+ # -------------------------------------- COMPUTE COUNTERS --------------------------------------
352
+
353
+ if current_state == 's1':
354
+
355
+ if len(self.state_tracker['state_seq']) == 3 and not self.state_tracker['INCORRECT_POSTURE']:
356
+ self.state_tracker['SQUAT_COUNT']+=1
357
+ play_sound = str(self.state_tracker['SQUAT_COUNT'])
358
+
359
+ elif 's2' in self.state_tracker['state_seq'] and len(self.state_tracker['state_seq'])==1:
360
+ self.state_tracker['IMPROPER_SQUAT']+=1
361
+ play_sound = 'incorrect'
362
+
363
+ elif self.state_tracker['INCORRECT_POSTURE']:
364
+ self.state_tracker['IMPROPER_SQUAT']+=1
365
+ play_sound = 'incorrect'
366
+
367
+
368
+ self.state_tracker['state_seq'] = []
369
+ self.state_tracker['INCORRECT_POSTURE'] = False
370
+
371
+
372
+ # ----------------------------------------------------------------------------------------------------
373
+
374
+
375
+
376
+
377
+ # -------------------------------------- PERFORM FEEDBACK ACTIONS --------------------------------------
378
+
379
+ else:
380
+ if hip_vertical_angle > self.thresholds['HIP_THRESH'][1]:
381
+ self.state_tracker['DISPLAY_TEXT'][0] = True
382
+
383
+
384
+ elif hip_vertical_angle < self.thresholds['HIP_THRESH'][0] and \
385
+ self.state_tracker['state_seq'].count('s2')==1:
386
+ self.state_tracker['DISPLAY_TEXT'][1] = True
387
+
388
+
389
+
390
+ if self.thresholds['KNEE_THRESH'][0] < knee_vertical_angle < self.thresholds['KNEE_THRESH'][1] and \
391
+ self.state_tracker['state_seq'].count('s2')==1:
392
+ self.state_tracker['LOWER_HIPS'] = True
393
+
394
+
395
+ elif knee_vertical_angle > self.thresholds['KNEE_THRESH'][2]:
396
+ self.state_tracker['DISPLAY_TEXT'][3] = True
397
+ self.state_tracker['INCORRECT_POSTURE'] = True
398
+
399
+
400
+ if (ankle_vertical_angle > self.thresholds['ANKLE_THRESH']):
401
+ self.state_tracker['DISPLAY_TEXT'][2] = True
402
+ self.state_tracker['INCORRECT_POSTURE'] = True
403
+
404
+
405
+ # ----------------------------------------------------------------------------------------------------
406
+
407
+
408
+
409
+
410
+ # ----------------------------------- COMPUTE INACTIVITY ---------------------------------------------
411
+
412
+ display_inactivity = False
413
+
414
+ if self.state_tracker['curr_state'] == self.state_tracker['prev_state']:
415
+
416
+ end_time = time.perf_counter()
417
+ self.state_tracker['INACTIVE_TIME'] += end_time - self.state_tracker['start_inactive_time']
418
+ self.state_tracker['start_inactive_time'] = end_time
419
+
420
+ if self.state_tracker['INACTIVE_TIME'] >= self.thresholds['INACTIVE_THRESH']:
421
+ self.state_tracker['SQUAT_COUNT'] = 0
422
+ self.state_tracker['IMPROPER_SQUAT'] = 0
423
+ display_inactivity = True
424
+
425
+
426
+ else:
427
+
428
+ self.state_tracker['start_inactive_time'] = time.perf_counter()
429
+ self.state_tracker['INACTIVE_TIME'] = 0.0
430
+
431
+ # -------------------------------------------------------------------------------------------------------
432
+
433
+
434
+
435
+ hip_text_coord_x = hip_coord[0] + 10
436
+ knee_text_coord_x = knee_coord[0] + 15
437
+ ankle_text_coord_x = ankle_coord[0] + 10
438
+
439
+ if self.flip_frame:
440
+ frame = cv2.flip(frame, 1)
441
+ hip_text_coord_x = frame_width - hip_coord[0] + 10
442
+ knee_text_coord_x = frame_width - knee_coord[0] + 15
443
+ ankle_text_coord_x = frame_width - ankle_coord[0] + 10
444
+
445
+
446
+
447
+ if 's3' in self.state_tracker['state_seq'] or current_state == 's1':
448
+ self.state_tracker['LOWER_HIPS'] = False
449
+
450
+ self.state_tracker['COUNT_FRAMES'][self.state_tracker['DISPLAY_TEXT']]+=1
451
+
452
+ frame = self._show_feedback(frame, self.state_tracker['COUNT_FRAMES'], self.FEEDBACK_ID_MAP, self.state_tracker['LOWER_HIPS'])
453
+
454
+
455
+
456
+ if display_inactivity:
457
+ # cv2.putText(frame, 'Resetting COUNTERS due to inactivity!!!', (10, frame_height - 20), self.font, 0.5, self.COLORS['blue'], 2, lineType=self.linetype)
458
+ play_sound = 'reset_counters'
459
+ self.state_tracker['start_inactive_time'] = time.perf_counter()
460
+ self.state_tracker['INACTIVE_TIME'] = 0.0
461
+
462
+
463
+ cv2.putText(frame, str(int(hip_vertical_angle)), (hip_text_coord_x, hip_coord[1]), self.font, 0.6, self.COLORS['light_green'], 2, lineType=self.linetype)
464
+ cv2.putText(frame, str(int(knee_vertical_angle)), (knee_text_coord_x, knee_coord[1]+10), self.font, 0.6, self.COLORS['light_green'], 2, lineType=self.linetype)
465
+ cv2.putText(frame, str(int(ankle_vertical_angle)), (ankle_text_coord_x, ankle_coord[1]), self.font, 0.6, self.COLORS['light_green'], 2, lineType=self.linetype)
466
+
467
+
468
+ draw_text(
469
+ frame,
470
+ "CORRECT: " + str(self.state_tracker['SQUAT_COUNT']),
471
+ pos=(int(frame_width*0.68), 30),
472
+ text_color=(255, 255, 230),
473
+ font_scale=0.7,
474
+ text_color_bg=(18, 185, 0)
475
+ )
476
+
477
+
478
+ draw_text(
479
+ frame,
480
+ "INCORRECT: " + str(self.state_tracker['IMPROPER_SQUAT']),
481
+ pos=(int(frame_width*0.68), 80),
482
+ text_color=(255, 255, 230),
483
+ font_scale=0.7,
484
+ text_color_bg=(221, 0, 0),
485
+
486
+ )
487
+
488
+
489
+ self.state_tracker['DISPLAY_TEXT'][self.state_tracker['COUNT_FRAMES'] > self.thresholds['CNT_FRAME_THRESH']] = False
490
+ self.state_tracker['COUNT_FRAMES'][self.state_tracker['COUNT_FRAMES'] > self.thresholds['CNT_FRAME_THRESH']] = 0
491
+ self.state_tracker['prev_state'] = current_state
492
+
493
+
494
+
495
+
496
+ else:
497
+
498
+ if self.flip_frame:
499
+ frame = cv2.flip(frame, 1)
500
+
501
+ end_time = time.perf_counter()
502
+ self.state_tracker['INACTIVE_TIME'] += end_time - self.state_tracker['start_inactive_time']
503
+
504
+ display_inactivity = False
505
+
506
+ if self.state_tracker['INACTIVE_TIME'] >= self.thresholds['INACTIVE_THRESH']:
507
+ self.state_tracker['SQUAT_COUNT'] = 0
508
+ self.state_tracker['IMPROPER_SQUAT'] = 0
509
+ # cv2.putText(frame, 'Resetting SQUAT_COUNT due to inactivity!!!', (10, frame_height - 25), self.font, 0.7, self.COLORS['blue'], 2)
510
+ display_inactivity = True
511
+
512
+ self.state_tracker['start_inactive_time'] = end_time
513
+
514
+ draw_text(
515
+ frame,
516
+ "CORRECT: " + str(self.state_tracker['SQUAT_COUNT']),
517
+ pos=(int(frame_width*0.68), 30),
518
+ text_color=(255, 255, 230),
519
+ font_scale=0.7,
520
+ text_color_bg=(18, 185, 0)
521
+ )
522
+
523
+
524
+ draw_text(
525
+ frame,
526
+ "INCORRECT: " + str(self.state_tracker['IMPROPER_SQUAT']),
527
+ pos=(int(frame_width*0.68), 80),
528
+ text_color=(255, 255, 230),
529
+ font_scale=0.7,
530
+ text_color_bg=(221, 0, 0),
531
+
532
+ )
533
+
534
+ if display_inactivity:
535
+ play_sound = 'reset_counters'
536
+ self.state_tracker['start_inactive_time'] = time.perf_counter()
537
+ self.state_tracker['INACTIVE_TIME'] = 0.0
538
+
539
+
540
+ # Reset all other state variables
541
+
542
+ self.state_tracker['prev_state'] = None
543
+ self.state_tracker['curr_state'] = None
544
+ self.state_tracker['INACTIVE_TIME_FRONT'] = 0.0
545
+ self.state_tracker['INCORRECT_POSTURE'] = False
546
+ self.state_tracker['DISPLAY_TEXT'] = np.full((5,), False)
547
+ self.state_tracker['COUNT_FRAMES'] = np.zeros((5,), dtype=np.int64)
548
+ self.state_tracker['start_inactive_time_front'] = time.perf_counter()
549
+
550
+
551
+
552
+ return frame, play_sound
553
+
554
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy
2
+ opencv-python-headless
3
+ mediapipe
4
+ streamlit
5
+ streamlit_webrtc
setup.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ mkdir -p ~/.streamlit/
2
+ echo "
3
+ [server]\n
4
+ headless=true\n
5
+ enableCORS=false\n
6
+ enableXsrfProtection=false\n
7
+ port=8080\n
8
+ \n
9
+ " > ~/.streamlit/config.toml
thresholds.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # Get thresholds for beginner mode
4
+ def get_thresholds_beginner():
5
+
6
+ _ANGLE_HIP_KNEE_VERT = {
7
+ 'NORMAL' : (0, 32),
8
+ 'TRANS' : (35, 65),
9
+ 'PASS' : (70, 95)
10
+ }
11
+
12
+
13
+ thresholds = {
14
+ 'HIP_KNEE_VERT': _ANGLE_HIP_KNEE_VERT,
15
+
16
+ 'HIP_THRESH' : [10, 50],
17
+ 'ANKLE_THRESH' : 45,
18
+ 'KNEE_THRESH' : [50, 70, 95],
19
+
20
+ 'OFFSET_THRESH' : 35.0,
21
+ 'INACTIVE_THRESH' : 15.0,
22
+
23
+ 'CNT_FRAME_THRESH' : 50
24
+
25
+ }
26
+
27
+ return thresholds
28
+
29
+
30
+
31
+ # Get thresholds for beginner mode
32
+ def get_thresholds_pro():
33
+
34
+ _ANGLE_HIP_KNEE_VERT = {
35
+ 'NORMAL' : (0, 32),
36
+ 'TRANS' : (35, 65),
37
+ 'PASS' : (80, 95)
38
+ }
39
+
40
+
41
+ thresholds = {
42
+ 'HIP_KNEE_VERT': _ANGLE_HIP_KNEE_VERT,
43
+
44
+ 'HIP_THRESH' : [15, 50],
45
+ 'ANKLE_THRESH' : 30,
46
+ 'KNEE_THRESH' : [50, 80, 95],
47
+
48
+ 'OFFSET_THRESH' : 35.0,
49
+ 'INACTIVE_THRESH' : 15.0,
50
+
51
+ 'CNT_FRAME_THRESH' : 50
52
+
53
+ }
54
+
55
+ return thresholds
utils.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import mediapipe as mp
3
+ import numpy as np
4
+
5
+ def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
6
+
7
+ x1, y1 = rect_start
8
+ x2, y2 = rect_end
9
+ w = corner_width
10
+
11
+ # draw filled rectangles
12
+ cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
13
+ cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
14
+ cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
15
+ cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
16
+ cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)
17
+
18
+
19
+ # draw filled ellipses
20
+ cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
21
+ angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)
22
+
23
+ cv2.ellipse(img, (x2 - w, y1 + w), (w, w),
24
+ angle = 0, startAngle = 0, endAngle = -90, color = box_color, thickness = -1)
25
+
26
+ cv2.ellipse(img, (x1 + w, y2 - w), (w, w),
27
+ angle = 0, startAngle = 90, endAngle = 180, color = box_color, thickness = -1)
28
+
29
+ cv2.ellipse(img, (x2 - w, y2 - w), (w, w),
30
+ angle = 0, startAngle = 0, endAngle = 90, color = box_color, thickness = -1)
31
+
32
+ return img
33
+
34
+
35
+
36
+
37
+ def draw_dotted_line(frame, lm_coord, start, end, line_color):
38
+ pix_step = 0
39
+
40
+ for i in range(start, end+1, 8):
41
+ cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)
42
+
43
+ return frame
44
+
45
+
46
+ def draw_text(
47
+ img,
48
+ msg,
49
+ width = 8,
50
+ font=cv2.FONT_HERSHEY_SIMPLEX,
51
+ pos=(0, 0),
52
+ font_scale=1,
53
+ font_thickness=2,
54
+ text_color=(0, 255, 0),
55
+ text_color_bg=(0, 0, 0),
56
+ box_offset=(20, 10),
57
+ ):
58
+
59
+ offset = box_offset
60
+ x, y = pos
61
+ text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
62
+ text_w, text_h = text_size
63
+ rec_start = tuple(p - o for p, o in zip(pos, offset))
64
+ rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))
65
+
66
+ img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)
67
+
68
+
69
+ cv2.putText(
70
+ img,
71
+ msg,
72
+ (int(rec_start[0] + 6), int(y + text_h + font_scale - 1)),
73
+ font,
74
+ font_scale,
75
+ text_color,
76
+ font_thickness,
77
+ cv2.LINE_AA,
78
+ )
79
+
80
+
81
+ return text_size
82
+
83
+
84
+
85
+
86
+ def find_angle(p1, p2, ref_pt = np.array([0,0])):
87
+ p1_ref = p1 - ref_pt
88
+ p2_ref = p2 - ref_pt
89
+
90
+ cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
91
+ theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
92
+
93
+ degree = int(180 / np.pi) * theta
94
+
95
+ return int(degree)
96
+
97
+
98
+
99
+
100
+
101
+ def get_landmark_array(pose_landmark, key, frame_width, frame_height):
102
+
103
+ denorm_x = int(pose_landmark[key].x * frame_width)
104
+ denorm_y = int(pose_landmark[key].y * frame_height)
105
+
106
+ return np.array([denorm_x, denorm_y])
107
+
108
+
109
+
110
+
111
+ def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):
112
+
113
+ if feature == 'nose':
114
+ return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)
115
+
116
+ elif feature == 'left' or 'right':
117
+ shldr_coord = get_landmark_array(kp_results, dict_features[feature]['shoulder'], frame_width, frame_height)
118
+ elbow_coord = get_landmark_array(kp_results, dict_features[feature]['elbow'], frame_width, frame_height)
119
+ wrist_coord = get_landmark_array(kp_results, dict_features[feature]['wrist'], frame_width, frame_height)
120
+ hip_coord = get_landmark_array(kp_results, dict_features[feature]['hip'], frame_width, frame_height)
121
+ knee_coord = get_landmark_array(kp_results, dict_features[feature]['knee'], frame_width, frame_height)
122
+ ankle_coord = get_landmark_array(kp_results, dict_features[feature]['ankle'], frame_width, frame_height)
123
+ foot_coord = get_landmark_array(kp_results, dict_features[feature]['foot'], frame_width, frame_height)
124
+
125
+ return shldr_coord, elbow_coord, wrist_coord, hip_coord, knee_coord, ankle_coord, foot_coord
126
+
127
+ else:
128
+ raise ValueError("feature needs to be either 'nose', 'left' or 'right")
129
+
130
+
131
+ def get_mediapipe_pose(
132
+ static_image_mode = False,
133
+ model_complexity = 1,
134
+ smooth_landmarks = True,
135
+ min_detection_confidence = 0.5,
136
+ min_tracking_confidence = 0.5
137
+
138
+ ):
139
+ pose = mp.solutions.pose.Pose(
140
+ static_image_mode = static_image_mode,
141
+ model_complexity = model_complexity,
142
+ smooth_landmarks = smooth_landmarks,
143
+ min_detection_confidence = min_detection_confidence,
144
+ min_tracking_confidence = min_tracking_confidence
145
+ )
146
+ return pose