Spaces:
Running
Running
Upload 8 files
Browse files- ChatErector.py +30 -0
- CustomRetriever.py +47 -0
- README.md.txt +12 -0
- app.py +3 -0
- db/utils.py +44 -0
- llm/utils.py +74 -0
- requirements.txt +10 -0
- ui/gradio_ui.py +88 -0
ChatErector.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llm.utils import initialize_LLM, format_chat_history, postprocess
|
2 |
+
from db.utils import initialize_database
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
def initializer(list_file_obj, llm_temperature, max_tokens, top_k, thold, progress=gr.Progress()):
|
7 |
+
vdb=initialize_database(list_file_obj)
|
8 |
+
qa_chain=initialize_LLM(llm_temperature, max_tokens, top_k, vdb, thold)#, progress)
|
9 |
+
return qa_chain, "Success."
|
10 |
+
|
11 |
+
|
12 |
+
@spaces.GPU
|
13 |
+
def conversation(qa_chain, message, history):
|
14 |
+
formatted_chat_history = format_chat_history(message, history)
|
15 |
+
# Generate response using QA chain
|
16 |
+
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
17 |
+
response_answer = postprocess(response)#response["answer"]
|
18 |
+
#if response_answer.find("Helpful Answer:") != -1:
|
19 |
+
#response_answer = response_answer.split("Helpful Answer:")[-1]
|
20 |
+
#response_sources = response["source_documents"]
|
21 |
+
#response_source1 = response_sources[0].page_content.strip()
|
22 |
+
#response_source2 = response_sources[1].page_content.strip()
|
23 |
+
#response_source3 = response_sources[2].page_content.strip()
|
24 |
+
# Langchain sources are zero-based
|
25 |
+
#response_source1_page = response_sources[0].metadata["page"] + 1
|
26 |
+
#response_source2_page = response_sources[1].metadata["page"] + 1
|
27 |
+
#response_source3_page = response_sources[2].metadata["page"] + 1
|
28 |
+
# Append user message and response to chat history
|
29 |
+
new_history = history + [(message, response_answer)]
|
30 |
+
return qa_chain, gr.update(value=""), new_history #, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
CustomRetriever.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.schema.retriever import BaseRetriever
|
2 |
+
from langchain_core.documents import Document
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
6 |
+
|
7 |
+
from langchain_core.documents import Document
|
8 |
+
from langchain_core.runnables import chain
|
9 |
+
|
10 |
+
class CustomRetriever():
|
11 |
+
def __init__(self, v_db, thold=0.7):
|
12 |
+
|
13 |
+
|
14 |
+
#self.retriever=RetrieverWithScores()
|
15 |
+
|
16 |
+
class RetrieverWithScores(BaseRetriever):
|
17 |
+
#def __init__(self, vdb):
|
18 |
+
#self.vdb=vdb
|
19 |
+
#def __init__(self, retriever: BaseRetriever): # Add an __init__ to store the existing retriever
|
20 |
+
#super().__init__(retriever=retriever)
|
21 |
+
def _get_relevant_documents(
|
22 |
+
self, query: str, *, run_manager: CallbackManagerForRetrieverRun)-> List[Document]:
|
23 |
+
|
24 |
+
@chain
|
25 |
+
def retr_func(query: str)-> List[Document]: #(vdb, query: str)-> List[Document]:
|
26 |
+
docs, scores = zip(*v_db.similarity_search_with_relevance_scores(query))#similarity_search_with_score(query))
|
27 |
+
result=[]
|
28 |
+
for doc, score in zip(docs, scores):
|
29 |
+
if score>thold:
|
30 |
+
doc.metadata["score"] = score
|
31 |
+
result.append(doc)
|
32 |
+
if len(result)==0:
|
33 |
+
result.append(Document(metadata={}, page_content='No data'))
|
34 |
+
|
35 |
+
return result #docs
|
36 |
+
|
37 |
+
return retr_func.invoke(query) #(self.vdb, query)
|
38 |
+
|
39 |
+
self.retriever=RetrieverWithScores()
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
README.md.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: RAG Test1
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.31.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from ui.gradio_ui import ui
|
2 |
+
|
3 |
+
ui()
|
db/utils.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
# Load and split PDF document
|
9 |
+
def load_doc(list_file_path):
|
10 |
+
# Processing for one document only
|
11 |
+
# loader = PyPDFLoader(file_path)
|
12 |
+
# pages = loader.load()
|
13 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
14 |
+
pages = []
|
15 |
+
for loader in loaders:
|
16 |
+
pages.extend(loader.load())
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
18 |
+
chunk_size = 1024,
|
19 |
+
chunk_overlap = 64
|
20 |
+
)
|
21 |
+
doc_splits = text_splitter.split_documents(pages)
|
22 |
+
return doc_splits
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def create_db(splits):
|
27 |
+
model_kwargs = {'device': 'cpu'}
|
28 |
+
|
29 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en", model_kwargs =model_kwargs)
|
30 |
+
vectordb = FAISS.from_documents(splits, embeddings)
|
31 |
+
return vectordb
|
32 |
+
|
33 |
+
|
34 |
+
def initialize_database(list_file_obj, progress=gr.Progress()):
|
35 |
+
# Create a list of documents (when valid)
|
36 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
37 |
+
# Load document and create splits
|
38 |
+
doc_splits = load_doc(list_file_path)
|
39 |
+
# Create or load vector database
|
40 |
+
vector_db = create_db(doc_splits)
|
41 |
+
return vector_db #, "Database created!"
|
42 |
+
|
43 |
+
|
44 |
+
|
llm/utils.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
2 |
+
from langchain.memory import ConversationBufferMemory
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from CustomRetriever import CustomRetriever
|
7 |
+
|
8 |
+
|
9 |
+
API_TOKEN=os.getenv("TOKEN")
|
10 |
+
|
11 |
+
# Initialize langchain LLM chain
|
12 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vdb,
|
13 |
+
thold=0.8, progress=gr.Progress()):
|
14 |
+
llm = HuggingFaceEndpoint(
|
15 |
+
huggingfacehub_api_token = API_TOKEN,
|
16 |
+
repo_id=llm_model,
|
17 |
+
temperature = temperature,
|
18 |
+
max_new_tokens = max_tokens,
|
19 |
+
top_k = top_k,
|
20 |
+
)
|
21 |
+
|
22 |
+
memory = ConversationBufferMemory(
|
23 |
+
memory_key="chat_history",
|
24 |
+
output_key='answer',
|
25 |
+
return_messages=True
|
26 |
+
)
|
27 |
+
|
28 |
+
retr=CustomRetriever(vdb, thold=thold)
|
29 |
+
retriever=retr.retriever #vector_db.as_retriever()
|
30 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
31 |
+
llm,
|
32 |
+
retriever=retriever,
|
33 |
+
chain_type="stuff",
|
34 |
+
memory=memory,
|
35 |
+
return_source_documents=True,
|
36 |
+
verbose=False,
|
37 |
+
)
|
38 |
+
return qa_chain
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Initialize LLM
|
43 |
+
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, thold, progress=gr.Progress()):
|
44 |
+
# print("llm_option",llm_option)
|
45 |
+
llm_name = "mistralai/Mistral-7B-Instruct-v0.2" #list_llm[llm_option]
|
46 |
+
#print("llm_name: ",llm_name)
|
47 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, thold)
|
48 |
+
return qa_chain #, "QA chain initialized. Chatbot is ready!"
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def format_chat_history(chat_history):#message, chat_history): #no need message
|
53 |
+
formatted_chat_history = []
|
54 |
+
for user_message, bot_message in chat_history:
|
55 |
+
formatted_chat_history.append(f"User: {user_message}")
|
56 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
57 |
+
return formatted_chat_history
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def postprocess(response):
|
62 |
+
try:
|
63 |
+
result=response["answer"]
|
64 |
+
for doc in response['source_documents']:
|
65 |
+
file_doc="\n\nFile: " + doc.metadata["source"]
|
66 |
+
page="\nPage: " + str(doc.metadata["page"])
|
67 |
+
content="\nFragment: " + doc.page_content.strip()
|
68 |
+
result+=file_doc+page+content
|
69 |
+
return result
|
70 |
+
except:
|
71 |
+
return response["answer"]
|
72 |
+
|
73 |
+
|
74 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
tqdm
|
7 |
+
accelerate
|
8 |
+
pypdf
|
9 |
+
faiss-cpu
|
10 |
+
#faiss-gpu
|
ui/gradio_ui.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ChatErector import conversation, initializer
|
3 |
+
|
4 |
+
def ui():
|
5 |
+
# with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
|
6 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as ui:
|
7 |
+
#vector_db = gr.State()
|
8 |
+
qa_chain = gr.State()
|
9 |
+
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
|
10 |
+
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
|
11 |
+
<b>Please do not upload confidential documents.</b>
|
12 |
+
""")
|
13 |
+
with gr.Row():
|
14 |
+
with gr.Column(scale = 86):
|
15 |
+
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
16 |
+
with gr.Row():
|
17 |
+
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
|
18 |
+
#with gr.Row():
|
19 |
+
#db_btn = gr.Button("Create vector database")
|
20 |
+
#with gr.Row():
|
21 |
+
#db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
|
22 |
+
#gr.Markdown("<style>body { font-size: 16px; }</style><b>Advanced settings</b>")
|
23 |
+
#with gr.Row():
|
24 |
+
#llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
|
25 |
+
with gr.Row():
|
26 |
+
with gr.Accordion("Advanced settings", open=False):
|
27 |
+
with gr.Row():
|
28 |
+
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
|
29 |
+
with gr.Row():
|
30 |
+
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
|
31 |
+
with gr.Row():
|
32 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
|
33 |
+
with gr.Row():
|
34 |
+
thold = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.8, step=0.1, label="Treshold", info="Retrieved information relevance level", interactive=True)
|
35 |
+
with gr.Row():
|
36 |
+
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
37 |
+
with gr.Row():
|
38 |
+
llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
|
39 |
+
|
40 |
+
with gr.Column(scale = 200):
|
41 |
+
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
42 |
+
chatbot = gr.Chatbot(height=505)
|
43 |
+
#with gr.Accordion("Relevent context from the source document", open=False):
|
44 |
+
#with gr.Row():
|
45 |
+
#doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
46 |
+
#source1_page = gr.Number(label="Page", scale=1)
|
47 |
+
#with gr.Row():
|
48 |
+
#doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
49 |
+
#source2_page = gr.Number(label="Page", scale=1)
|
50 |
+
#with gr.Row():
|
51 |
+
#doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
52 |
+
#source3_page = gr.Number(label="Page", scale=1)
|
53 |
+
with gr.Row():
|
54 |
+
msg = gr.Textbox(placeholder="Ask a question", container=True)
|
55 |
+
with gr.Row():
|
56 |
+
submit_btn = gr.Button("Submit")
|
57 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
58 |
+
|
59 |
+
# Preprocessing events
|
60 |
+
#db_btn.click(initialize_database, \
|
61 |
+
#inputs=[document], \
|
62 |
+
#outputs=[vector_db, db_progress])
|
63 |
+
qachain_btn.click(initializer, \
|
64 |
+
inputs=[document, slider_temperature, slider_maxtokens, slider_topk, thold], \
|
65 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
66 |
+
inputs=None, \
|
67 |
+
outputs=[chatbot] \
|
68 |
+
queue=False)
|
69 |
+
|
70 |
+
# Chatbot events
|
71 |
+
msg.submit(conversation, \
|
72 |
+
inputs=[qa_chain, msg, chatbot], \
|
73 |
+
outputs=[qa_chain, msg, chatbot], \
|
74 |
+
queue=False)
|
75 |
+
submit_btn.click(conversation, \
|
76 |
+
inputs=[qa_chain, msg, chatbot], \
|
77 |
+
outputs=[qa_chain, msg, chatbot], \
|
78 |
+
queue=False)
|
79 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
80 |
+
inputs=None, \
|
81 |
+
outputs=[chatbot], \
|
82 |
+
queue=False)
|
83 |
+
ui.queue().launch(debug=True)
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|