Spaces:
Running
Running
Update llm/utils.py
Browse files- llm/utils.py +74 -74
llm/utils.py
CHANGED
@@ -1,74 +1,74 @@
|
|
1 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
2 |
-
from langchain.memory import ConversationBufferMemory
|
3 |
-
from langchain.chains import ConversationalRetrievalChain
|
4 |
-
import gradio as gr
|
5 |
-
import os
|
6 |
-
from CustomRetriever import CustomRetriever
|
7 |
-
|
8 |
-
|
9 |
-
API_TOKEN=os.getenv("TOKEN")
|
10 |
-
|
11 |
-
# Initialize langchain LLM chain
|
12 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vdb,
|
13 |
-
thold=0.8, progress=gr.Progress()):
|
14 |
-
llm = HuggingFaceEndpoint(
|
15 |
-
huggingfacehub_api_token = API_TOKEN,
|
16 |
-
repo_id=llm_model,
|
17 |
-
temperature = temperature,
|
18 |
-
max_new_tokens = max_tokens,
|
19 |
-
top_k = top_k,
|
20 |
-
)
|
21 |
-
|
22 |
-
memory = ConversationBufferMemory(
|
23 |
-
memory_key="chat_history",
|
24 |
-
output_key='answer',
|
25 |
-
return_messages=True
|
26 |
-
)
|
27 |
-
|
28 |
-
retr=CustomRetriever(vdb, thold=thold)
|
29 |
-
retriever=retr.retriever #vector_db.as_retriever()
|
30 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
31 |
-
llm,
|
32 |
-
retriever=retriever,
|
33 |
-
chain_type="stuff",
|
34 |
-
memory=memory,
|
35 |
-
return_source_documents=True,
|
36 |
-
verbose=False,
|
37 |
-
)
|
38 |
-
return qa_chain
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Initialize LLM
|
43 |
-
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, thold, progress=gr.Progress()):
|
44 |
-
# print("llm_option",llm_option)
|
45 |
-
llm_name = "mistralai/Mistral-7B-Instruct-v0.2" #list_llm[llm_option]
|
46 |
-
#print("llm_name: ",llm_name)
|
47 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, thold)
|
48 |
-
return qa_chain #, "QA chain initialized. Chatbot is ready!"
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
def format_chat_history(chat_history):#message, chat_history): #no need message
|
53 |
-
formatted_chat_history = []
|
54 |
-
for user_message, bot_message in chat_history:
|
55 |
-
formatted_chat_history.append(f"User: {user_message}")
|
56 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
57 |
-
return formatted_chat_history
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
def postprocess(response):
|
62 |
-
try:
|
63 |
-
result=response["answer"]
|
64 |
-
for doc in response['source_documents']:
|
65 |
-
file_doc="\n\nFile: " + doc.metadata["source"]
|
66 |
-
page="\nPage: " + str(doc.metadata["page"])
|
67 |
-
content="\nFragment: " + doc.page_content.strip()
|
68 |
-
result+=file_doc+page+content
|
69 |
-
return result
|
70 |
-
except:
|
71 |
-
return response["answer"]
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
1 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
2 |
+
from langchain.memory import ConversationBufferMemory
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from CustomRetriever import RetrieverWithScores #CustomRetriever
|
7 |
+
|
8 |
+
|
9 |
+
API_TOKEN=os.getenv("TOKEN")
|
10 |
+
|
11 |
+
# Initialize langchain LLM chain
|
12 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vdb,
|
13 |
+
thold=0.8, progress=gr.Progress()):
|
14 |
+
llm = HuggingFaceEndpoint(
|
15 |
+
huggingfacehub_api_token = API_TOKEN,
|
16 |
+
repo_id=llm_model,
|
17 |
+
temperature = temperature,
|
18 |
+
max_new_tokens = max_tokens,
|
19 |
+
top_k = top_k,
|
20 |
+
)
|
21 |
+
|
22 |
+
memory = ConversationBufferMemory(
|
23 |
+
memory_key="chat_history",
|
24 |
+
output_key='answer',
|
25 |
+
return_messages=True
|
26 |
+
)
|
27 |
+
|
28 |
+
#retr=CustomRetriever(vdb, thold=thold)
|
29 |
+
retriever=RetrieverWithScores(vdb, thold=thold) #retr.retriever #vector_db.as_retriever()
|
30 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
31 |
+
llm,
|
32 |
+
retriever=retriever,
|
33 |
+
chain_type="stuff",
|
34 |
+
memory=memory,
|
35 |
+
return_source_documents=True,
|
36 |
+
verbose=False,
|
37 |
+
)
|
38 |
+
return qa_chain
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Initialize LLM
|
43 |
+
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, thold, progress=gr.Progress()):
|
44 |
+
# print("llm_option",llm_option)
|
45 |
+
llm_name = "mistralai/Mistral-7B-Instruct-v0.2" #list_llm[llm_option]
|
46 |
+
#print("llm_name: ",llm_name)
|
47 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, thold)
|
48 |
+
return qa_chain #, "QA chain initialized. Chatbot is ready!"
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def format_chat_history(chat_history):#message, chat_history): #no need message
|
53 |
+
formatted_chat_history = []
|
54 |
+
for user_message, bot_message in chat_history:
|
55 |
+
formatted_chat_history.append(f"User: {user_message}")
|
56 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
57 |
+
return formatted_chat_history
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def postprocess(response):
|
62 |
+
try:
|
63 |
+
result=response["answer"]
|
64 |
+
for doc in response['source_documents']:
|
65 |
+
file_doc="\n\nFile: " + doc.metadata["source"]
|
66 |
+
page="\nPage: " + str(doc.metadata["page"])
|
67 |
+
content="\nFragment: " + doc.page_content.strip()
|
68 |
+
result+=file_doc+page+content
|
69 |
+
return result
|
70 |
+
except:
|
71 |
+
return response["answer"]
|
72 |
+
|
73 |
+
|
74 |
+
|