Gainward777 commited on
Commit
f424c90
·
verified ·
1 Parent(s): 208a71f

Update llm/utils.py

Browse files
Files changed (1) hide show
  1. llm/utils.py +9 -16
llm/utils.py CHANGED
@@ -18,14 +18,13 @@ from langchain_core.runnables import chain
18
  API_TOKEN=os.getenv("TOKEN")
19
 
20
 
21
-
 
22
  VDB=None
23
-
24
  THOLD=0.7
25
 
26
  @chain
27
- def retr_func(query: str)-> List[Document]: #(vdb, query: str)-> List[Document]:
28
- #global VDB
29
 
30
  docs, scores = zip(*VDB.similarity_search_with_relevance_scores(query))#similarity_search_with_score(query))
31
  result=[]
@@ -36,13 +35,7 @@ def retr_func(query: str)-> List[Document]: #(vdb, query: str)-> List[Document]:
36
  if len(result)==0:
37
  result.append(Document(metadata={}, page_content='No data'))
38
 
39
- print()
40
- print(THOLD)
41
- print()
42
- print(result)
43
- print()
44
-
45
- return result #docs
46
 
47
 
48
  class RetrieverWithScores(BaseRetriever):
@@ -74,7 +67,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vdb,
74
  VDB=vdb
75
  THOLD=thold
76
  #retr=CustomRetriever(vdb, thold=thold)
77
- #retriever=retr.retriever #vector_db.as_retriever()
78
  qa_chain = ConversationalRetrievalChain.from_llm(
79
  llm,
80
  retriever=RetrieverWithScores(),#retriever,
@@ -90,14 +83,14 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vdb,
90
  # Initialize LLM
91
  def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, thold, progress=gr.Progress()):
92
  # print("llm_option",llm_option)
93
- llm_name = "mistralai/Mistral-7B-Instruct-v0.2" #list_llm[llm_option]
94
  #print("llm_name: ",llm_name)
95
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, thold)
96
- return qa_chain #, "QA chain initialized. Chatbot is ready!"
97
 
98
 
99
 
100
- def format_chat_history(chat_history):#message, chat_history): #no need message
101
  formatted_chat_history = []
102
  for user_message, bot_message in chat_history:
103
  formatted_chat_history.append(f"User: {user_message}")
@@ -118,7 +111,7 @@ def postprocess(response):
118
  result+=file_doc+page+content
119
  return result
120
  except:
121
- return "I don't know." #response["answer"]
122
 
123
 
124
 
 
18
  API_TOKEN=os.getenv("TOKEN")
19
 
20
 
21
+ #Because of bugs in pydantic it is not possible to take it out retr_func and RetrieverWithScores into a separate neat class.
22
+ #It is necessary to use dirty implementation through global variables.
23
  VDB=None
 
24
  THOLD=0.7
25
 
26
  @chain
27
+ def retr_func(query: str)-> List[Document]:
 
28
 
29
  docs, scores = zip(*VDB.similarity_search_with_relevance_scores(query))#similarity_search_with_score(query))
30
  result=[]
 
35
  if len(result)==0:
36
  result.append(Document(metadata={}, page_content='No data'))
37
 
38
+ return result
 
 
 
 
 
 
39
 
40
 
41
  class RetrieverWithScores(BaseRetriever):
 
67
  VDB=vdb
68
  THOLD=thold
69
  #retr=CustomRetriever(vdb, thold=thold)
70
+ #retriever=retr.retriever
71
  qa_chain = ConversationalRetrievalChain.from_llm(
72
  llm,
73
  retriever=RetrieverWithScores(),#retriever,
 
83
  # Initialize LLM
84
  def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, thold, progress=gr.Progress()):
85
  # print("llm_option",llm_option)
86
+ llm_name = "mistralai/Mistral-7B-Instruct-v0.2"
87
  #print("llm_name: ",llm_name)
88
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, thold)
89
+ return qa_chain
90
 
91
 
92
 
93
+ def format_chat_history(chat_history):
94
  formatted_chat_history = []
95
  for user_message, bot_message in chat_history:
96
  formatted_chat_history.append(f"User: {user_message}")
 
111
  result+=file_doc+page+content
112
  return result
113
  except:
114
+ return "I don't know."
115
 
116
 
117