Spaces:
Sleeping
Sleeping
import onnx | |
import onnxruntime as ort | |
import numpy as np | |
import cv2 | |
import os | |
import csv | |
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3" | |
MODEL_DIR='sd/prompt_helper/model' | |
ORT_SESSION=ort.InferenceSession(f'{MODEL_DIR}/model.onnx', providers=['CPUExecutionProvider']) | |
#ORT_INPUT_NAME=ort_session.get_inputs()[0].name | |
IMAGE_SIZE = 448 | |
def img_preporation(img): | |
bgr_img = np.array(img)[:, :, ::-1].copy() | |
size = max(bgr_img.shape[0:2]) | |
pad_x = size - bgr_img.shape[1] | |
pad_y = size - bgr_img.shape[0] | |
pad_l = pad_x // 2 | |
pad_t = pad_y // 2 | |
#add paddings to squaring image | |
np.pad(bgr_img, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255) | |
#adaptive resize | |
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4 | |
bgr_img = cv2.resize(bgr_img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp) | |
bgr_img = bgr_img.astype(np.float32) | |
def get_help(img): | |
# = model[0] | |
ort_input_name = ORT_SESSION.get_inputs()[0].name | |
with open(os.path.join(MODEL_DIR, "selected_tags.csv"), "r", encoding="utf-8") as f: | |
reader = csv.reader(f) | |
l = [row for row in reader] | |
header = l[0] # tag_id,name,category,count | |
rows = l[1:] | |
assert header[0] == "tag_id" and header[1] == "name" and header[2] == "category", f"unexpected csv format: {header}" | |
general_tags = [row[1] for row in rows[1:] if row[2] == "0"] | |
character_tags = [row[1] for row in rows[1:] if row[2] == "4"] | |
tag_freq = {} | |
undesired_tags = ["transparent background"] | |
#img = Image.open(image_path) | |
preped_img = img_preporation(img) | |
preped_img = np.expand_dims(preped_img, axis=0) | |
# Run inference | |
prob = ORT_SESSION.run(None, {ort_input_name: preped_img})[0][0] | |
# Generate Tags | |
combined_tags = [] | |
general_tag_text = "" | |
character_tag_text = "" | |
remove_underscore = True | |
caption_separator = ", " | |
general_threshold = 0.35 | |
character_threshold = 0.35 | |
for i, p in enumerate(prob[4:]): | |
if i < len(general_tags) and p >= general_threshold: | |
tag_name = general_tags[i] | |
if remove_underscore and len(tag_name) > 3: # ignore emoji tags like >_< and ^_^ | |
tag_name = tag_name.replace("_", " ") | |
if tag_name not in undesired_tags: | |
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1 | |
general_tag_text += caption_separator + tag_name | |
combined_tags.append(tag_name) | |
elif i >= len(general_tags) and p >= character_threshold: | |
tag_name = character_tags[i - len(general_tags)] | |
if remove_underscore and len(tag_name) > 3: | |
tag_name = tag_name.replace("_", " ") | |
if tag_name not in undesired_tags: | |
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1 | |
character_tag_text += caption_separator + tag_name | |
combined_tags.append(tag_name) | |
# Remove leading comma | |
if len(general_tag_text) > 0: | |
general_tag_text = general_tag_text[len(caption_separator) :] | |
if len(character_tag_text) > 0: | |
character_tag_text = character_tag_text[len(caption_separator) :] | |
tag_text = caption_separator.join(combined_tags) | |
return tag_text |