Spaces:
Running
on
Zero
Running
on
Zero
from sd.utils.utils import * | |
from utils.utils import sketch_process, prompt_preprocess | |
#from controlnet_aux.pidi import PidiNetDetector | |
import spaces | |
class Controller(): | |
def __init__(self, | |
models_names=["cagliostrolab/animagine-xl-3.1", | |
"stabilityai/stable-diffusion-xl-base-1.0"], | |
lora_path='sd/lora/lora.safetensors'): | |
self.models_names=models_names | |
self.lora_path=lora_path | |
self.vae=get_vae() | |
self.controlnet=get_controlnet() | |
self.adapter=get_adapter() | |
self.scheduler=get_scheduler(model_name=self.models_names[1]) | |
self.detector=get_detector() | |
self.first_pipe=get_pipe(vae=self.vae, | |
model_name=self.models_names[0], | |
controlnet=self.controlnet, | |
lora_path=self.lora_path) | |
self.second_pipe=get_pipe(vae=self.vae, | |
model_name=self.models_names[1], | |
adapter=self.adapter, | |
scheduler=self.scheduler) | |
def get_first_result(self, img, prompt, negative_prompt, | |
controlnet_scale=0.5, strength=1.0,n_steps=30,eta=1.0): | |
substrate, resized_image = sketch_process(input_image) | |
prompt=prompt_preprocess(prompt) | |
result=self.first_pipe(image=substrate, | |
control_image=resized_image, | |
strength=strength, | |
prompt=prompt, | |
negative_prompt = negative_prompt, | |
controlnet_conditioning_scale=float(controlnet_scale), | |
generator=torch.manual_seed(0), | |
num_inference_steps=n_steps, | |
eta=eta) | |
return result.images[0] | |
def get_second_result(self, img, prompt, negative_prompt, | |
g_scale=7.5, n_steps=25, | |
adapter_scale=0.9, adapter_factor=1.0): | |
preprocessed_img=self.detector(img, | |
detect_resolution=1024, | |
image_resolution=1024, | |
apply_filter=True).convert("L") | |
result=self.second_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=preprocessed_img, | |
guidance_scale=g_scale, | |
num_inference_steps=n_steps, | |
adapter_conditioning_scale=adapter_scale, | |
adapter_conditioning_factor=adapter_factor, | |
generator = torch.manual_seed(42)) | |
return result.images[0] | |