Spaces:
Sleeping
Sleeping
import spaces | |
from sd.prompt_helper import helper | |
from PIL import Image | |
from sd.utils.utils import * | |
from utils.utils import sketch_process, prompt_preprocess | |
MODELS_NAMES=["cagliostrolab/animagine-xl-3.1", | |
"stabilityai/stable-diffusion-xl-base-1.0"] | |
LORA_PATH='sd/lora/lora.safetensors' | |
VAE=get_vae() | |
CONTROLNET=get_controlnet() | |
ADAPTER=get_adapter() | |
SCHEDULER=get_scheduler(model_name=MODELS_NAMES[1]) | |
DETECTOR=get_detector() | |
FIRST_PIPE=get_pipe(vae=VAE, | |
model_name=MODELS_NAMES[0], | |
controlnet=CONTROLNET, | |
lora_path=LORA_PATH) | |
SECOND_PIPE=get_pipe(vae=VAE, | |
model_name=MODELS_NAMES[1], | |
adapter=ADAPTER, | |
scheduler=SCHEDULER) | |
def get_first_result(img, prompt, negative_prompt, | |
controlnet_scale=0.5, strength=1.0,n_steps=30,eta=1.0): | |
substrate, resized_image = sketch_process(img["composite"]) | |
prompt=prompt_preprocess(prompt) | |
FIRST_PIPE.to('cuda') | |
result=FIRST_PIPE(image=substrate, | |
control_image=resized_image, | |
strength=strength, | |
prompt=prompt, | |
negative_prompt = negative_prompt, | |
controlnet_conditioning_scale=float(controlnet_scale), | |
generator=torch.manual_seed(0), | |
num_inference_steps=n_steps, | |
eta=eta) | |
FIRST_PIPE.to('cpu') | |
return result.images[0] | |
def get_second_result(img, prompt, negative_prompt, | |
g_scale=7.5, n_steps=25, | |
adapter_scale=0.9, adapter_factor=1.0): | |
DETECTOR.to('cuda') | |
SECOND_PIPE.to('cuda') | |
preprocessed_img=DETECTOR(img, | |
detect_resolution=1024, | |
image_resolution=1024, | |
apply_filter=True).convert("L") | |
result=SECOND_PIPE(prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=preprocessed_img, | |
guidance_scale=g_scale, | |
num_inference_steps=n_steps, | |
adapter_conditioning_scale=adapter_scale, | |
adapter_conditioning_factor=adapter_factor, | |
generator = torch.manual_seed(42)) | |
DETECTOR.to('cpu') | |
SECOND_PIPE.to('cpu') | |
return result.images[0] | |
def get_help_w_prompt(img): | |
if isinstance(img, dict): | |
return helper.get_help(img["composite"]) | |
else: | |
return helper.get_help(img) |