Spaces:
Sleeping
Sleeping
Gainward777
commited on
Update sd/prompt_helper/helper.py
Browse files- sd/prompt_helper/helper.py +91 -91
sd/prompt_helper/helper.py
CHANGED
@@ -1,92 +1,92 @@
|
|
1 |
-
import onnx
|
2 |
-
import onnxruntime as ort
|
3 |
-
import numpy as np
|
4 |
-
import cv2
|
5 |
-
import os
|
6 |
-
import csv
|
7 |
-
|
8 |
-
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
|
9 |
-
|
10 |
-
MODEL_DIR='sd/prompt_helper/model'
|
11 |
-
ORT_SESSION=ort.InferenceSession(f'{MODEL_DIR}/model.onnx', providers=['CPUExecutionProvider'])
|
12 |
-
#ORT_INPUT_NAME=ort_session.get_inputs()[0].name
|
13 |
-
|
14 |
-
IMAGE_SIZE = 448
|
15 |
-
|
16 |
-
def img_preporation(img):
|
17 |
-
bgr_img = np.array(img)[:, :, ::-1].copy()
|
18 |
-
size = max(bgr_img.shape[0:2])
|
19 |
-
pad_x = size - bgr_img.shape[1]
|
20 |
-
pad_y = size - bgr_img.shape[0]
|
21 |
-
pad_l = pad_x // 2
|
22 |
-
pad_t = pad_y // 2
|
23 |
-
|
24 |
-
#add paddings to squaring image
|
25 |
-
np.pad(bgr_img, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255)
|
26 |
-
|
27 |
-
#adaptive resize
|
28 |
-
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4
|
29 |
-
bgr_img = cv2.resize(bgr_img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
def get_help(img):
|
35 |
-
# = model[0]
|
36 |
-
ort_input_name = ORT_SESSION.get_inputs()[0].name
|
37 |
-
|
38 |
-
with open(os.path.join(MODEL_DIR, "selected_tags.csv"), "r", encoding="utf-8") as f:
|
39 |
-
reader = csv.reader(f)
|
40 |
-
l = [row for row in reader]
|
41 |
-
header = l[0] # tag_id,name,category,count
|
42 |
-
rows = l[1:]
|
43 |
-
assert header[0] == "tag_id" and header[1] == "name" and header[2] == "category", f"unexpected csv format: {header}"
|
44 |
-
|
45 |
-
general_tags = [row[1] for row in rows[1:] if row[2] == "0"]
|
46 |
-
character_tags = [row[1] for row in rows[1:] if row[2] == "4"]
|
47 |
-
|
48 |
-
tag_freq = {}
|
49 |
-
undesired_tags = ["transparent background"]
|
50 |
-
|
51 |
-
#img = Image.open(image_path)
|
52 |
-
preped_img = img_preporation(img)
|
53 |
-
preped_img = np.expand_dims(preped_img, axis=0)
|
54 |
-
|
55 |
-
# Run inference
|
56 |
-
prob = ORT_SESSION.run(None, {ort_input_name: preped_img})[0][0]
|
57 |
-
# Generate Tags
|
58 |
-
combined_tags = []
|
59 |
-
general_tag_text = ""
|
60 |
-
character_tag_text = ""
|
61 |
-
remove_underscore = True
|
62 |
-
caption_separator = ", "
|
63 |
-
general_threshold = 0.35
|
64 |
-
character_threshold = 0.35
|
65 |
-
|
66 |
-
for i, p in enumerate(prob[4:]):
|
67 |
-
if i < len(general_tags) and p >= general_threshold:
|
68 |
-
tag_name = general_tags[i]
|
69 |
-
if remove_underscore and len(tag_name) > 3: # ignore emoji tags like >_< and ^_^
|
70 |
-
tag_name = tag_name.replace("_", " ")
|
71 |
-
|
72 |
-
if tag_name not in undesired_tags:
|
73 |
-
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
74 |
-
general_tag_text += caption_separator + tag_name
|
75 |
-
combined_tags.append(tag_name)
|
76 |
-
elif i >= len(general_tags) and p >= character_threshold:
|
77 |
-
tag_name = character_tags[i - len(general_tags)]
|
78 |
-
if remove_underscore and len(tag_name) > 3:
|
79 |
-
tag_name = tag_name.replace("_", " ")
|
80 |
-
|
81 |
-
if tag_name not in undesired_tags:
|
82 |
-
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
83 |
-
character_tag_text += caption_separator + tag_name
|
84 |
-
combined_tags.append(tag_name)
|
85 |
-
|
86 |
-
# Remove leading comma
|
87 |
-
if len(general_tag_text) > 0:
|
88 |
-
general_tag_text = general_tag_text[len(caption_separator) :]
|
89 |
-
if len(character_tag_text) > 0:
|
90 |
-
character_tag_text = character_tag_text[len(caption_separator) :]
|
91 |
-
tag_text = caption_separator.join(combined_tags)
|
92 |
return tag_text
|
|
|
1 |
+
import onnx
|
2 |
+
import onnxruntime as ort
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
import csv
|
7 |
+
|
8 |
+
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
|
9 |
+
|
10 |
+
MODEL_DIR='sd/prompt_helper/model'
|
11 |
+
ORT_SESSION=ort.InferenceSession(f'{MODEL_DIR}/model.onnx', providers=['CPUExecutionProvider'])
|
12 |
+
#ORT_INPUT_NAME=ort_session.get_inputs()[0].name
|
13 |
+
|
14 |
+
IMAGE_SIZE = 448
|
15 |
+
|
16 |
+
def img_preporation(img):
|
17 |
+
bgr_img = np.array(img)[:, :, ::-1].copy()
|
18 |
+
size = max(bgr_img.shape[0:2])
|
19 |
+
pad_x = size - bgr_img.shape[1]
|
20 |
+
pad_y = size - bgr_img.shape[0]
|
21 |
+
pad_l = pad_x // 2
|
22 |
+
pad_t = pad_y // 2
|
23 |
+
|
24 |
+
#add paddings to squaring image
|
25 |
+
np.pad(bgr_img, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255)
|
26 |
+
|
27 |
+
#adaptive resize
|
28 |
+
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4
|
29 |
+
bgr_img = cv2.resize(bgr_img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp)
|
30 |
+
|
31 |
+
return bgr_img.astype(np.float32)
|
32 |
+
|
33 |
+
|
34 |
+
def get_help(img):
|
35 |
+
# = model[0]
|
36 |
+
ort_input_name = ORT_SESSION.get_inputs()[0].name
|
37 |
+
|
38 |
+
with open(os.path.join(MODEL_DIR, "selected_tags.csv"), "r", encoding="utf-8") as f:
|
39 |
+
reader = csv.reader(f)
|
40 |
+
l = [row for row in reader]
|
41 |
+
header = l[0] # tag_id,name,category,count
|
42 |
+
rows = l[1:]
|
43 |
+
assert header[0] == "tag_id" and header[1] == "name" and header[2] == "category", f"unexpected csv format: {header}"
|
44 |
+
|
45 |
+
general_tags = [row[1] for row in rows[1:] if row[2] == "0"]
|
46 |
+
character_tags = [row[1] for row in rows[1:] if row[2] == "4"]
|
47 |
+
|
48 |
+
tag_freq = {}
|
49 |
+
undesired_tags = ["transparent background"]
|
50 |
+
|
51 |
+
#img = Image.open(image_path)
|
52 |
+
preped_img = img_preporation(img)
|
53 |
+
preped_img = np.expand_dims(preped_img, axis=0)
|
54 |
+
|
55 |
+
# Run inference
|
56 |
+
prob = ORT_SESSION.run(None, {ort_input_name: preped_img})[0][0]
|
57 |
+
# Generate Tags
|
58 |
+
combined_tags = []
|
59 |
+
general_tag_text = ""
|
60 |
+
character_tag_text = ""
|
61 |
+
remove_underscore = True
|
62 |
+
caption_separator = ", "
|
63 |
+
general_threshold = 0.35
|
64 |
+
character_threshold = 0.35
|
65 |
+
|
66 |
+
for i, p in enumerate(prob[4:]):
|
67 |
+
if i < len(general_tags) and p >= general_threshold:
|
68 |
+
tag_name = general_tags[i]
|
69 |
+
if remove_underscore and len(tag_name) > 3: # ignore emoji tags like >_< and ^_^
|
70 |
+
tag_name = tag_name.replace("_", " ")
|
71 |
+
|
72 |
+
if tag_name not in undesired_tags:
|
73 |
+
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
74 |
+
general_tag_text += caption_separator + tag_name
|
75 |
+
combined_tags.append(tag_name)
|
76 |
+
elif i >= len(general_tags) and p >= character_threshold:
|
77 |
+
tag_name = character_tags[i - len(general_tags)]
|
78 |
+
if remove_underscore and len(tag_name) > 3:
|
79 |
+
tag_name = tag_name.replace("_", " ")
|
80 |
+
|
81 |
+
if tag_name not in undesired_tags:
|
82 |
+
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
83 |
+
character_tag_text += caption_separator + tag_name
|
84 |
+
combined_tags.append(tag_name)
|
85 |
+
|
86 |
+
# Remove leading comma
|
87 |
+
if len(general_tag_text) > 0:
|
88 |
+
general_tag_text = general_tag_text[len(caption_separator) :]
|
89 |
+
if len(character_tag_text) > 0:
|
90 |
+
character_tag_text = character_tag_text[len(caption_separator) :]
|
91 |
+
tag_text = caption_separator.join(combined_tags)
|
92 |
return tag_text
|