reqroup / app.py
Lucas ARRIESSE
WIP
594f2fe
raw
history blame
4.03 kB
import asyncio
import logging
import os
import sys
import uvicorn
from fastapi import FastAPI
from schemas import CriticizeSolutionsRequest, RequirementInfo, ReqGroupingCategory, ReqGroupingResponse, ReqGroupingRequest, _ReqGroupingCategory, _ReqGroupingOutput
from jinja2 import Environment, FileSystemLoader
from litellm import acompletion
from litellm.router import Router
from dotenv import load_dotenv
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s][%(levelname)s][%(filename)s:%(lineno)d]: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# Load .env files
load_dotenv()
if "LLM_MODEL" not in os.environ or "LLM_API_KEY" not in os.environ:
logging.error(
"No LLM token (`LLM_API_KEY`) and/or LLM model (`LLM_MODEL`) were provided in the env vars. Exiting")
sys.exit(-1)
# LiteLLM router
llm_router = Router(model_list=[
{
"model_name": "chat",
"litellm_params": {
"model": os.environ.get("LLM_MODEL"),
"api_key": os.environ.get("LLM_API_KEY"),
"max_retries": 5
}
}
])
# Jinja2 environment to load prompt templates
prompt_env = Environment(loader=FileSystemLoader('prompts'), enable_async=True)
api = FastAPI()
@api.post("/categorize_requirements")
async def categorize_reqs(params: ReqGroupingRequest) -> ReqGroupingResponse:
"""Categorize the given service requirements into categories"""
MAX_ATTEMPTS = 5
categories: list[_ReqGroupingCategory] = []
messages = []
# categorize the requirements using their indices
req_prompt = await prompt_env.get_template("classify.txt").render_async(**{
"requirements": [rq.model_dump() for rq in params.requirements],
"max_n_categories": params.max_n_categories,
"response_schema": _ReqGroupingOutput.model_json_schema()})
logging.info(req_prompt)
# add system prompt with requirements
messages.append({"role": "user", "content": req_prompt})
# ensure all requirements items are processed
for attempt in range(MAX_ATTEMPTS):
req_completion = await llm_router.acompletion(model="chat", messages=messages, response_format=_ReqGroupingOutput)
output = _ReqGroupingOutput.model_validate_json(
req_completion.choices[0].message.content)
# quick check to ensure no requirement was left out by the LLM by checking all IDs are contained in at least a single category
assigned_ids = {
req_id for cat in output.categories for req_id in cat.items}
unassigned_ids = set(range(1, len(params.requirements))) - assigned_ids
if len(unassigned_ids) == 0:
categories.extend(output.categories)
break
else:
messages.append(req_completion.choices[0].message)
messages.append(
{"role": "user", "content": f"You haven't categorized the following requirements in at least one category {unassigned_ids}. Please do so."})
if attempt == MAX_ATTEMPTS - 1:
raise Exception("Failed to classify all requirements")
# build the final category objects
# remove the invalid (likely hallucinated) requirement IDs
final_categories = []
for idx, cat in enumerate(output.categories):
final_categories.append(ReqGroupingCategory(
id=idx,
title=cat.title,
requirements=[params.requirements[i]
for i in cat.items if i < len(params.requirements)]
))
return ReqGroupingResponse(categories=final_categories)
@api.post("/criticize_solution")
async def criticize_solution(params: CriticizeSolutionsRequest) -> str:
req_prompt = await prompt_env.get_template("criticize.txt").render_async(solutions=[sol.model_dump() for sol in params.solutions])
req_completion = await llm_router.acompletion(model="chat", messages=[{"role": "user", "content": req_prompt}])
return req_completion.choices[0].message.content
uvicorn.run(api, host="0.0.0.0", port=8000)