reqroup / app.py
Lucas ARRIESSE
Return solutions which are not grounded on search items
32239ae
raw
history blame
7.95 kB
import asyncio
import logging
import os
import sys
import uvicorn
from fastapi import FastAPI
from schemas import _SearchedSolutionModel, _SolutionCriticismOutput, CriticizeSolutionsRequest, CritiqueResponse, RequirementInfo, ReqGroupingCategory, ReqGroupingResponse, ReqGroupingRequest, _ReqGroupingCategory, _ReqGroupingOutput, SolutionCriticism, SolutionModel, SolutionSearchResponse
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from litellm.router import Router
from dotenv import load_dotenv
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s][%(levelname)s][%(filename)s:%(lineno)d]: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# Load .env files
load_dotenv()
if "LLM_MODEL" not in os.environ or "LLM_API_KEY" not in os.environ:
logging.error(
"No LLM token (`LLM_API_KEY`) and/or LLM model (`LLM_MODEL`) were provided in the env vars. Exiting")
sys.exit(-1)
# LiteLLM router
llm_router = Router(model_list=[
{
"model_name": "chat",
"litellm_params": {
"model": os.environ.get("LLM_MODEL"),
"api_key": os.environ.get("LLM_API_KEY"),
"rpm": 15,
"max_parallel_requests": 4,
"allowed_fails": 1,
"cooldown_time": 60,
"max_retries": 10,
}
}
], num_retries=10, retry_after=30)
# Jinja2 environment to load prompt templates
prompt_env = Environment(loader=FileSystemLoader(
'prompts'), enable_async=True, undefined=StrictUndefined)
api = FastAPI(docs_url="/")
@api.post("/categorize_requirements")
async def categorize_reqs(params: ReqGroupingRequest) -> ReqGroupingResponse:
"""Categorize the given service requirements into categories"""
MAX_ATTEMPTS = 5
categories: list[_ReqGroupingCategory] = []
messages = []
# categorize the requirements using their indices
req_prompt = await prompt_env.get_template("classify.txt").render_async(**{
"requirements": [rq.model_dump() for rq in params.requirements],
"max_n_categories": params.max_n_categories,
"response_schema": _ReqGroupingOutput.model_json_schema()})
# add system prompt with requirements
messages.append({"role": "user", "content": req_prompt})
# ensure all requirements items are processed
for attempt in range(MAX_ATTEMPTS):
req_completion = await llm_router.acompletion(model="chat", messages=messages, response_format=_ReqGroupingOutput)
output = _ReqGroupingOutput.model_validate_json(
req_completion.choices[0].message.content)
# quick check to ensure no requirement was left out by the LLM by checking all IDs are contained in at least a single category
valid_ids_universe = set(range(0, len(params.requirements)))
assigned_ids = {
req_id for cat in output.categories for req_id in cat.items}
# keep only non-hallucinated, valid assigned ids
valid_assigned_ids = assigned_ids.intersection(valid_ids_universe)
# check for remaining requirements assigned to none of the categories
unassigned_ids = valid_ids_universe - valid_assigned_ids
if len(unassigned_ids) == 0:
categories.extend(output.categories)
break
else:
messages.append(req_completion.choices[0].message)
messages.append(
{"role": "user", "content": f"You haven't categorized the following requirements in at least one category {unassigned_ids}. Please do so."})
if attempt == MAX_ATTEMPTS - 1:
raise Exception("Failed to classify all requirements")
# build the final category objects
# remove the invalid (likely hallucinated) requirement IDs
final_categories = []
for idx, cat in enumerate(output.categories):
final_categories.append(ReqGroupingCategory(
id=idx,
title=cat.title,
requirements=[params.requirements[i]
for i in cat.items if i < len(params.requirements)]
))
return ReqGroupingResponse(categories=final_categories)
@api.post("/criticize_solution", response_model=CritiqueResponse)
async def criticize_solution(params: CriticizeSolutionsRequest) -> CritiqueResponse:
"""Criticize the challenges, weaknesses and limitations of the provided solutions."""
async def __criticize_single(solution: SolutionModel):
req_prompt = await prompt_env.get_template("criticize.txt").render_async(**{
"solutions": [solution.model_dump()],
"response_schema": _SolutionCriticismOutput.model_json_schema()
})
req_completion = await llm_router.acompletion(
model="chat",
messages=[{"role": "user", "content": req_prompt}],
response_format=_SolutionCriticismOutput
)
criticism_out = _SolutionCriticismOutput.model_validate_json(
req_completion.choices[0].message.content
)
return SolutionCriticism(solution=solution, criticism=criticism_out.criticisms[0])
critiques = await asyncio.gather(*[__criticize_single(sol) for sol in params.solutions], return_exceptions=False)
return CritiqueResponse(critiques=critiques)
@api.post("/search_solutions_gemini", response_model=SolutionSearchResponse)
async def search_solutions(params: ReqGroupingResponse) -> SolutionSearchResponse:
"""Searches solutions using Gemini and grounded on google search"""
async def _search_inner(cat: ReqGroupingCategory) -> SolutionModel:
# ================== generate the solution with web grounding
req_prompt = await prompt_env.get_template("search_solution.txt").render_async(**{
"category": cat.model_dump(),
})
# generate the completion in non-structured mode.
# the googleSearch tool enables grounding gemini with google search
# this also forces gemini to perform a tool call
req_completion = await llm_router.acompletion(model="chat", messages=[
{"role": "user", "content": req_prompt}
], tools=[{"googleSearch": {}}], tool_choice="required")
# ==================== structure the solution as a json ===================================
structured_prompt = await prompt_env.get_template("structure_solution.txt").render_async(**{
"solution": req_completion.choices[0].message.content,
"response_schema": _SearchedSolutionModel.model_json_schema()
})
structured_completion = await llm_router.acompletion(model="chat", messages=[
{"role": "user", "content": structured_prompt}
], response_format=_SearchedSolutionModel)
solution_model = _SearchedSolutionModel.model_validate_json(
structured_completion.choices[0].message.content)
# ======================== build the final solution object ================================
# extract the source metadata from the search items
sources_metadata = [
f'{a["web"]["title"]} - {a["web"]["uri"]}' for a in req_completion["vertex_ai_grounding_metadata"][0]['groundingChunks']]
final_sol = SolutionModel(
Context="",
Requirements=[
cat.requirements[i].requirement for i in solution_model.requirement_ids
],
Problem_Description=solution_model.problem_description,
Solution_Description=solution_model.solution_description,
References=sources_metadata,
Category_Id=cat.id,
)
return final_sol
solutions = await asyncio.gather(*[_search_inner(cat) for cat in params.categories], return_exceptions=True)
logging.info(solutions)
final_solutions = [
sol for sol in solutions if not isinstance(sol, Exception)]
return SolutionSearchResponse(solutions=final_solutions)
uvicorn.run(api, host="0.0.0.0", port=8000)