Spaces:
Runtime error
Runtime error
File size: 1,391 Bytes
f966bca 6934dad 7015481 f966bca 7015481 6934dad 7015481 6934dad 7015481 6934dad 7015481 6934dad 7015481 6934dad 7015481 6934dad f966bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import requests
import base64
from PIL import Image
from io import BytesIO
def query_hf_image_generation(api_key, prompt):
API_URL = f"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"inputs": prompt
}
response = requests.post(API_URL, headers=headers, json=data)
result = response.json()
# Check if the API response contains an error.
if 'error' in result:
return f"Error: {result['error']}", None
# Assuming the API returns an image in base64 format.
image_data = result['data'][0] # You might need to adjust this path according to the actual API response
image = Image.open(BytesIO(base64.b64decode(image_data)))
return image
iface = gr.Interface(
fn=query_hf_image_generation,
inputs=[
gr.Textbox(label="Hugging Face API Key", placeholder="Enter your Hugging Face API Key here..."),
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
],
outputs=gr.outputs.Image(label="Generated Image"),
title="Stable Diffusion XL Image Generator",
description="Enter your API Key and a prompt to generate an image using the Stable Diffusion XL model from Hugging Face."
)
iface.launch() |