import gradio as gr import requests from PIL import Image import base64 from io import BytesIO def query_hf_image_generation(api_key, prompt): API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = {"inputs": prompt} response = requests.post(API_URL, headers=headers, json=data) if response.status_code != 200: return f"Error: Received HTTP {response.status_code} - {response.text}" try: result = response.json() except ValueError: return f"Error decoding JSON: Unexpected response format {response.text}" if 'error' in result: return f"Error: {result['error']}" if 'data' in result: try: base64_string = result['data'][0] base64_data = base64_string.split(",")[1] if "," in base64_string else base64_string image_data = base64.b64decode(base64_data) image = Image.open(BytesIO(image_data)) return image except Exception as e: return f"Error processing image data: {e}" else: return "Error: Missing 'data' in the response." iface = gr.Interface( fn=query_hf_image_generation, inputs=[ gr.Textbox(label="Hugging Face API Key", placeholder="Enter your Hugging Face API Key here..."), gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") ], outputs=gr.Image(label="Generated Image"), title="Stable Diffusion XL Image Generator", description="Enter your API Key and a prompt to generate an image using the Stable Diffusion XL model from Hugging Face." ) iface.launch(share=True)