import gradio as gr import requests from PIL import Image import base64 from io import BytesIO def query_hf_image_generation(api_key, prompt): API_URL = f"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = { "inputs": prompt } response = requests.post(API_URL, headers=headers, json=data) result = response.json() # Check if the API response contains an error. if 'error' in result: return "Error: " + result['error'], None # Assuming the API returns an image in base64 format. image_data = result['data'][0] # Adjust this according to your specific API response structure image_bytes = base64.b64decode(image_data.split(",")[1]) image = Image.open(BytesIO(image_bytes)) return image iface = gr.Interface( fn=query_hf_image_generation, inputs=[ gr.Textbox(label="Hugging Face API Key", placeholder="Enter your Hugging Face API Key here..."), gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") ], outputs=gr.Image(label="Generated Image"), title="Stable Diffusion XL Image Generator", description="Enter your API Key and a prompt to generate an image using the Stable Diffusion XL model from Hugging Face." ) iface.launch()