import gradio as gr import requests from PIL import Image import base64 from io import BytesIO def query_hf_image_generation(api_key, prompt): API_URL = f"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = { "inputs": prompt } response = requests.post(API_URL, headers=headers, json=data) if response.status_code != 200: return "Error: Unexpected status code {} with message {}".format(response.status_code, response.text) result = response.json() # Debug output to help figure out what result looks like print("DEBUG:", result) # Check if the API response contains an error. if 'error' in result: return "Error: " + result['error'], None # Assuming the API returns an image in base64 format. if 'data' in result: base64_image = result['data'][0] # This might need to be adjusted based on API return structure base64_data = base64_image.split(",")[1] if ',' in base64_image else base64_image image_bytes = base64.b64decode(base64_data) image = Image.open(BytesIO(image_bytes)) return image else: return "Error: 'data' not found in response." iface = gr.Interface( fn=query_hf_image_generation, inputs=[ gr.Textbox(label="Hugging Face API Key", placeholder="Enter your Hugging Face API Key here..."), gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") ], outputs=gr.Image(label="Generated Image"), title="Stable Diffusion XL Image Generator", description="Enter your API Key and a prompt to generate an image using the Stable Diffusion XL model from Hugging Face." ) iface.launch()