|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
import math |
|
|
|
import gradio as gr |
|
import cv2 |
|
import mediapipe as mp |
|
import numpy as np |
|
|
|
mp_drawing = mp.solutions.drawing_utils |
|
mp_drawing_styles = mp.solutions.drawing_styles |
|
mp_pose = mp.solutions.pose |
|
|
|
TITLE = "MediaPipe Human Pose Estimation" |
|
DESCRIPTION = "https://google.github.io/mediapipe/" |
|
|
|
|
|
def calculateAngle(landmark1, landmark2, landmark3): |
|
''' |
|
This function calculates angle between three different landmarks. |
|
Args: |
|
landmark1: The first landmark containing the x,y and z coordinates. |
|
landmark2: The second landmark containing the x,y and z coordinates. |
|
landmark3: The third landmark containing the x,y and z coordinates. |
|
Returns: |
|
angle: The calculated angle between the three landmarks. |
|
|
|
''' |
|
|
|
|
|
x1, y1 = landmark1.x, landmark1.y |
|
x2, y2 = landmark2.x, landmark2.y |
|
x3, y3 = landmark3.x, landmark3.y |
|
|
|
|
|
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2)) |
|
|
|
|
|
|
|
|
|
if angle < 0: |
|
|
|
|
|
angle += 360 |
|
|
|
|
|
return angle |
|
|
|
def classifyPose(landmarks, output_image, display=False): |
|
''' |
|
This function classifies yoga poses depending upon the angles of various body joints. |
|
Args: |
|
landmarks: A list of detected landmarks of the person whose pose needs to be classified. |
|
output_image: A image of the person with the detected pose landmarks drawn. |
|
display: A boolean value that is if set to true the function displays the resultant image with the pose label |
|
written on it and returns nothing. |
|
Returns: |
|
output_image: The image with the detected pose landmarks drawn and pose label written. |
|
label: The classified pose label of the person in the output_image. |
|
|
|
''' |
|
|
|
|
|
label = 'Unknown Pose' |
|
|
|
|
|
color = (0, 0, 255) |
|
|
|
|
|
|
|
|
|
|
|
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value]) |
|
|
|
|
|
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value]) |
|
|
|
|
|
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]) |
|
|
|
|
|
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value]) |
|
|
|
|
|
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value], |
|
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value]) |
|
|
|
|
|
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value], |
|
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value]) |
|
|
|
|
|
|
|
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 100 and \ |
|
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 100 and \ |
|
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 200 and \ |
|
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 200: |
|
label = "Five-Pointed Star Pose" |
|
|
|
|
|
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195: |
|
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110: |
|
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195: |
|
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120: |
|
label = 'Warrior II Pose' |
|
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195: |
|
label = 'T Pose' |
|
|
|
|
|
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195: |
|
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45: |
|
label = 'Tree Pose' |
|
|
|
|
|
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 100 and \ |
|
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 100 and \ |
|
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \ |
|
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \ |
|
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 50: |
|
label = "Upward Salute Pose" |
|
|
|
|
|
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \ |
|
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \ |
|
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 50 and \ |
|
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 50: |
|
label = "Hands Under Feet Pose" |
|
|
|
|
|
|
|
|
|
|
|
if label != 'Unknown Pose': |
|
|
|
|
|
color = (0, 255, 0) |
|
|
|
|
|
cv2.putText(output_image, label, (220, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2) |
|
|
|
|
|
if display: |
|
|
|
|
|
plt.figure(figsize=[10,10]) |
|
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off'); |
|
|
|
else: |
|
|
|
|
|
return output_image, label |
|
|
|
|
|
def run( |
|
image: np.ndarray, |
|
model_complexity: int, |
|
enable_segmentation: bool, |
|
min_detection_confidence: float, |
|
background_color: str, |
|
) -> np.ndarray: |
|
with mp_pose.Pose( |
|
static_image_mode=True, |
|
model_complexity=model_complexity, |
|
enable_segmentation=enable_segmentation, |
|
min_detection_confidence=min_detection_confidence, |
|
) as pose: |
|
results = pose.process(image) |
|
|
|
res = image[:, :, ::-1].copy() |
|
if enable_segmentation: |
|
if background_color == "white": |
|
bg_color = 255 |
|
elif background_color == "black": |
|
bg_color = 0 |
|
elif background_color == "green": |
|
bg_color = (0, 255, 0) |
|
else: |
|
raise ValueError |
|
|
|
if results.segmentation_mask is not None: |
|
res[results.segmentation_mask <= 0.1] = bg_color |
|
else: |
|
res[:] = bg_color |
|
|
|
mp_drawing.draw_landmarks( |
|
res, |
|
results.pose_landmarks, |
|
mp_pose.POSE_CONNECTIONS, |
|
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(), |
|
) |
|
|
|
if results.pose_landmarks: |
|
res, pose_classification = classifyPose(results.pose_landmarks.landmark, res) |
|
|
|
return res[:, :, ::-1] |
|
|
|
|
|
model_complexities = list(range(3)) |
|
background_colors = ["white", "black", "green"] |
|
|
|
image_paths = sorted(pathlib.Path("images").rglob("*.jpg")) |
|
examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths] |
|
|
|
demo = gr.Interface( |
|
fn=run, |
|
inputs=[ |
|
gr.Image(label="Input", type="numpy"), |
|
gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]), |
|
gr.Checkbox(label="Enable Segmentation", value=True), |
|
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5), |
|
gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]), |
|
], |
|
outputs=gr.Image(label="Output"), |
|
examples=examples, |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |
|
|