BSuruchi's picture
Update app.py
8ef424c verified
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import math
import gradio as gr
import cv2
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
TITLE = "MediaPipe Human Pose Estimation"
DESCRIPTION = "https://google.github.io/mediapipe/"
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1 = landmark1.x, landmark1.y
x2, y2 = landmark2.x, landmark2.y
x3, y3 = landmark3.x, landmark3.y
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# angle = abs(angle) # Convert the angle to an absolute value.
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
def classifyPose(landmarks, output_image, display=False):
'''
This function classifies yoga poses depending upon the angles of various body joints.
Args:
landmarks: A list of detected landmarks of the person whose pose needs to be classified.
output_image: A image of the person with the detected pose landmarks drawn.
display: A boolean value that is if set to true the function displays the resultant image with the pose label
written on it and returns nothing.
Returns:
output_image: The image with the detected pose landmarks drawn and pose label written.
label: The classified pose label of the person in the output_image.
'''
# Initialize the label of the pose. It is not known at this stage.
label = 'Unknown Pose'
# Specify the color (Red) with which the label will be written on the image.
color = (0, 0, 255)
# Calculate the required angles.
#----------------------------------------------------------------------------------------------------------------
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 200 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 200:
label = "Five-Pointed Star Pose"
# Check if it is the warrior II pose or the T pose.
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
label = 'Warrior II Pose'
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
label = 'T Pose'
# Check if it is the tree pose.
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 100 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 50:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 50 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 50:
label = "Hands Under Feet Pose"
#----------------------------------------------------------------------------------------------------------------
# Check if the pose is classified successfully
if label != 'Unknown Pose':
# Update the color (to green) with which the label will be written on the image.
color = (0, 255, 0)
# Write the label on the output image.
cv2.putText(output_image, label, (220, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
# Check if the resultant image is specified to be displayed.
if display:
# Display the resultant image.
plt.figure(figsize=[10,10])
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
else:
# Return the output image and the classified label.
return output_image, label
def run(
image: np.ndarray,
model_complexity: int,
enable_segmentation: bool,
min_detection_confidence: float,
background_color: str,
) -> np.ndarray:
with mp_pose.Pose(
static_image_mode=True,
model_complexity=model_complexity,
enable_segmentation=enable_segmentation,
min_detection_confidence=min_detection_confidence,
) as pose:
results = pose.process(image)
res = image[:, :, ::-1].copy()
if enable_segmentation:
if background_color == "white":
bg_color = 255
elif background_color == "black":
bg_color = 0
elif background_color == "green":
bg_color = (0, 255, 0) # type: ignore
else:
raise ValueError
if results.segmentation_mask is not None:
res[results.segmentation_mask <= 0.1] = bg_color
else:
res[:] = bg_color
mp_drawing.draw_landmarks(
res,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(),
)
if results.pose_landmarks:
res, pose_classification = classifyPose(results.pose_landmarks.landmark, res) #Pose Classification code
return res[:, :, ::-1]
model_complexities = list(range(3))
background_colors = ["white", "black", "green"]
image_paths = sorted(pathlib.Path("images").rglob("*.jpg"))
examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths]
demo = gr.Interface(
fn=run,
inputs=[
gr.Image(label="Input", type="numpy"),
gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]),
gr.Checkbox(label="Enable Segmentation", value=True),
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5),
gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]),
],
outputs=gr.Image(label="Output"),
examples=examples,
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()