File size: 4,746 Bytes
5c22f66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import tarfile
if os.environ.get('SYSTEM') == 'spaces':
subprocess.call('pip uninstall -y opencv-python'.split())
subprocess.call('pip uninstall -y opencv-python-headless'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
import gradio as gr
import huggingface_hub
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
TITLE = 'MediaPipe Human Pose Estimation'
DESCRIPTION = 'https://google.github.io/mediapipe/'
ARTICLE = None
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_sample_images() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
image_dir.mkdir()
dataset_repo = 'hysts/input-images'
filenames = ['002.tar']
for name in filenames:
path = huggingface_hub.hf_hub_download(dataset_repo,
name,
repo_type='dataset',
use_auth_token=TOKEN)
with tarfile.open(path) as f:
f.extractall(image_dir.as_posix())
return sorted(image_dir.rglob('*.jpg'))
def run(image: np.ndarray, model_complexity: int, enable_segmentation: bool,
min_detection_confidence: float, background_color: str) -> np.ndarray:
with mp_pose.Pose(
static_image_mode=True,
model_complexity=model_complexity,
enable_segmentation=enable_segmentation,
min_detection_confidence=min_detection_confidence) as pose:
results = pose.process(image)
res = image[:, :, ::-1].copy()
if enable_segmentation:
if background_color == 'white':
bg_color = 255
elif background_color == 'black':
bg_color = 0
elif background_color == 'green':
bg_color = (0, 255, 0)
else:
raise ValueError
if results.segmentation_mask is not None:
res[results.segmentation_mask <= 0.1] = bg_color
else:
res[:] = bg_color
mp_drawing.draw_landmarks(res,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.
get_default_pose_landmarks_style())
return res[:, :, ::-1]
def main():
args = parse_args()
model_complexities = list(range(3))
background_colors = ['white', 'black', 'green']
image_paths = load_sample_images()
examples = [[
path.as_posix(), model_complexities[1], True, 0.5, background_colors[0]
] for path in image_paths]
gr.Interface(
run,
[
gr.inputs.Image(type='numpy', label='Input'),
gr.inputs.Radio(model_complexities,
type='index',
default=model_complexities[1],
label='Model Complexity'),
gr.inputs.Checkbox(default=True, label='Enable Segmentation'),
gr.inputs.Slider(0,
1,
step=0.05,
default=0.5,
label='Minimum Detection Confidence'),
gr.inputs.Radio(background_colors,
type='value',
default=background_colors[0],
label='Background Color'),
],
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|