|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
import tarfile |
|
|
|
if os.environ.get('SYSTEM') == 'spaces': |
|
subprocess.call(shlex.split('pip uninstall -y opencv-python')) |
|
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) |
|
subprocess.call( |
|
shlex.split('pip install opencv-python-headless==4.5.5.64')) |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import mediapipe as mp |
|
import numpy as np |
|
|
|
mp_drawing = mp.solutions.drawing_utils |
|
mp_drawing_styles = mp.solutions.drawing_styles |
|
mp_pose = mp.solutions.pose |
|
|
|
TITLE = 'MediaPipe Human Pose Estimation' |
|
DESCRIPTION = 'https://google.github.io/mediapipe/' |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
|
|
def load_sample_images() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path('images') |
|
if not image_dir.exists(): |
|
image_dir.mkdir() |
|
dataset_repo = 'hysts/input-images' |
|
filenames = ['002.tar'] |
|
for name in filenames: |
|
path = huggingface_hub.hf_hub_download(dataset_repo, |
|
name, |
|
repo_type='dataset', |
|
use_auth_token=HF_TOKEN) |
|
with tarfile.open(path) as f: |
|
f.extractall(image_dir.as_posix()) |
|
return sorted(image_dir.rglob('*.jpg')) |
|
|
|
|
|
def run(image: np.ndarray, model_complexity: int, enable_segmentation: bool, |
|
min_detection_confidence: float, background_color: str) -> np.ndarray: |
|
with mp_pose.Pose( |
|
static_image_mode=True, |
|
model_complexity=model_complexity, |
|
enable_segmentation=enable_segmentation, |
|
min_detection_confidence=min_detection_confidence) as pose: |
|
results = pose.process(image) |
|
|
|
res = image[:, :, ::-1].copy() |
|
if enable_segmentation: |
|
if background_color == 'white': |
|
bg_color = 255 |
|
elif background_color == 'black': |
|
bg_color = 0 |
|
elif background_color == 'green': |
|
bg_color = (0, 255, 0) |
|
else: |
|
raise ValueError |
|
|
|
if results.segmentation_mask is not None: |
|
res[results.segmentation_mask <= 0.1] = bg_color |
|
else: |
|
res[:] = bg_color |
|
|
|
mp_drawing.draw_landmarks(res, |
|
results.pose_landmarks, |
|
mp_pose.POSE_CONNECTIONS, |
|
landmark_drawing_spec=mp_drawing_styles. |
|
get_default_pose_landmarks_style()) |
|
|
|
return res[:, :, ::-1] |
|
|
|
|
|
model_complexities = list(range(3)) |
|
background_colors = ['white', 'black', 'green'] |
|
|
|
image_paths = load_sample_images() |
|
examples = [[ |
|
path.as_posix(), model_complexities[1], True, 0.5, background_colors[0] |
|
] for path in image_paths] |
|
|
|
gr.Interface( |
|
fn=run, |
|
inputs=[ |
|
gr.Image(label='Input', type='numpy'), |
|
gr.Radio(label='Model Complexity', |
|
choices=model_complexities, |
|
type='index', |
|
value=model_complexities[1]), |
|
gr.Checkbox(default=True, label='Enable Segmentation'), |
|
gr.Slider(label='Minimum Detection Confidence', |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.5), |
|
gr.Radio(label='Background Color', |
|
choices=background_colors, |
|
type='value', |
|
value=background_colors[0]), |
|
], |
|
outputs=gr.Image(label='Output', type='numpy'), |
|
examples=examples, |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
).launch(show_api=False) |
|
|