#!/usr/bin/env python from __future__ import annotations import argparse import os import pathlib import subprocess import tarfile if os.environ.get('SYSTEM') == 'spaces': subprocess.call('pip uninstall -y opencv-python'.split()) subprocess.call('pip uninstall -y opencv-python-headless'.split()) subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) import gradio as gr import huggingface_hub import mediapipe as mp import numpy as np mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_pose = mp.solutions.pose TITLE = 'MediaPipe Human Pose Estimation' DESCRIPTION = 'https://google.github.io/mediapipe/' ARTICLE = None TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') parser.add_argument('--allow-screenshot', action='store_true') return parser.parse_args() def load_sample_images() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): image_dir.mkdir() dataset_repo = 'hysts/input-images' filenames = ['002.tar'] for name in filenames: path = huggingface_hub.hf_hub_download(dataset_repo, name, repo_type='dataset', use_auth_token=TOKEN) with tarfile.open(path) as f: f.extractall(image_dir.as_posix()) return sorted(image_dir.rglob('*.jpg')) def run(image: np.ndarray, model_complexity: int, enable_segmentation: bool, min_detection_confidence: float, background_color: str) -> np.ndarray: with mp_pose.Pose( static_image_mode=True, model_complexity=model_complexity, enable_segmentation=enable_segmentation, min_detection_confidence=min_detection_confidence) as pose: results = pose.process(image) res = image[:, :, ::-1].copy() if enable_segmentation: if background_color == 'white': bg_color = 255 elif background_color == 'black': bg_color = 0 elif background_color == 'green': bg_color = (0, 255, 0) else: raise ValueError if results.segmentation_mask is not None: res[results.segmentation_mask <= 0.1] = bg_color else: res[:] = bg_color mp_drawing.draw_landmarks(res, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, landmark_drawing_spec=mp_drawing_styles. get_default_pose_landmarks_style()) return res[:, :, ::-1] def main(): args = parse_args() model_complexities = list(range(3)) background_colors = ['white', 'black', 'green'] image_paths = load_sample_images() examples = [[ path.as_posix(), model_complexities[1], True, 0.5, background_colors[0] ] for path in image_paths] gr.Interface( run, [ gr.inputs.Image(type='numpy', label='Input'), gr.inputs.Radio(model_complexities, type='index', default=model_complexities[1], label='Model Complexity'), gr.inputs.Checkbox(default=True, label='Enable Segmentation'), gr.inputs.Slider(0, 1, step=0.05, default=0.5, label='Minimum Detection Confidence'), gr.inputs.Radio(background_colors, type='value', default=background_colors[0], label='Background Color'), ], gr.outputs.Image(type='numpy', label='Output'), examples=examples, title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_screenshot=args.allow_screenshot, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()