File size: 6,740 Bytes
b8316c3
9b5b26a
 
 
c19d193
6aae614
3f13438
e5aa9ed
9b5b26a
b8316c3
 
9b50534
9b5b26a
5df72d6
9b5b26a
 
 
 
 
 
 
 
 
 
df444eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5aa9ed
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
74bf5e1
5e25eba
 
74bf5e1
5e25eba
74bf5e1
 
5e25eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bf5e1
5e25eba
74bf5e1
 
5e25eba
 
 
 
b8316c3
 
 
0c8481a
b8316c3
 
 
74bf5e1
e121372
c415157
f07c8ae
73120c9
 
0c8481a
 
 
f07c8ae
3f13438
13d500a
8c01ffb
 
8fe992b
df444eb
50118e2
8c01ffb
 
01c03d1
8c01ffb
 
5d2a7fc
 
3a6b443
8fe992b
 
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import os
from huggingface_hub import list_models
from Gradio_UI import GradioUI
import baostock as bs
import pandas as pd
import re

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_cutom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"

# Weather Data Tool using weatherapi.com API
@tool
def weather_data_tool(location: str, api_key: str) -> str:
    """
    A tool that fetches the current weather data for a given location using the weatherapi.com API.
    
    Args:
        location: The location for which to retrieve weather data (e.g., "London", "Paris", or "New York").
        api_key: d3d95d8e1ada4f48a83112710251202
    
    Returns:
        A string with the current weather details (temperature, condition, etc.) or an error message.
    """
    try:
        # Construct the API URL for current weather data
        url = f"http://api.weatherapi.com/v1/current.json?key={api_key}&q={location}&aqi=no"
        response = requests.get(url)
        if response.status_code != 200:
            return f"Error: Unable to retrieve data. HTTP Status Code: {response.status_code}"          
        data = response.json()       
        # If the response includes an error, return its message
        if "error" in data:
            return f"Error: {data['error'].get('message', 'Unknown error')}"       
        # Extract location and current weather details
        location_info = data.get("location", {})
        current = data.get("current", {})      
        location_name = location_info.get("name", location)
        region = location_info.get("region", "")
        country = location_info.get("country", "")
        temp_c = current.get("temp_c", "N/A")
        condition = current.get("condition", {}).get("text", "N/A")       
        # Build a result string
        result = f"Weather in {location_name}"
        if region:
            result += f", {region}"
        if country:
            result += f", {country}"
        result += f": {temp_c}°C, {condition}."       
        return result
    except Exception as e:
        return f"An exception occurred: {str(e)}"

@tool
def model_download_tool(task: str) -> str:
    """
    This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
    It returns the name of the checkpoint.

    Args:
        task: The task for which to get the download count.
    """
    most_downloaded_model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
    return most_downloaded_model.id

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"

@tool
def get_stock_data_baostock(stock_code: str) -> str:
    """Fetch the latest stock data for a given stock code using Baostock.
    Args:
        stock_code: A string representing the stock code (e.g., 'sh.600941' for China Mobile).
    """
    try:
        # Log in to the Baostock system
        lg = bs.login()
        if lg.error_code != '0':
            return f"Failed to log in to Baostock: {lg.error_msg}"

        # Fetch daily K-line data for the stock (defaults to the most recent trading day)
        rs = bs.query_history_k_data_plus(
            code=stock_code,
            fields="date,code,open,high,low,close,volume",  # Fields to retrieve
            frequency="d",  # Daily K-line
            adjustflag="2"  # Adjustment type: 2 for forward adjustment
        )
        if rs.error_code != '0':
            return f"Failed to fetch stock data: {rs.error_msg}"
        # Convert the data to a DataFrame
        data_list = []
        while (rs.error_code == '0') & rs.next():
            data_list.append(rs.get_row_data())
        df = pd.DataFrame(data_list, columns=rs.fields)
        # Log out of the Baostock system
        bs.logout()
        # Check if the data is empty
        if df.empty:
            return f"No data found for stock code '{stock_code}'."
        # Extract the latest trading day's data
        latest_data = df.iloc[-1]  # Get the last row of data (most recent trading day)
        date = latest_data['date']  # Date
        stock_name = latest_data['code']  # Stock code
        close_price = latest_data['close']  # Closing price
        volume = latest_data['volume']  # Trading volume
        # Construct the result string
        result = f"Stock Code: {stock_name}\nDate: {date}\nClosing Price: {close_price}\nVolume: {volume}"
        return result
    except Exception as e:
        return f"An error occurred while fetching stock data: {str(e)}"
# Example call
print(get_stock_data_baostock('sh.600941'))

final_answer = FinalAnswerTool()

# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image", trust_remote_code=True, token=os.getenv('hf_token'))

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

model = HfApiModel(
    max_tokens=3000,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    #model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',
    #model_id='mistralai/Mistral-7B-Instruct-v0.3',
    #model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
    #model_id="google/gemma-2-9b-it",
    custom_role_conversions=None,
    token=os.getenv('hf_token'),
)

agent = CodeAgent(
    model=model,
    tools=[final_answer, image_generation_tool, get_stock_data_baostock, weather_data_tool], ## add your tools here (don't remove final answer)
    max_steps=4,
    verbosity_level=1,
    grammar=None,
    planning_interval=3,
    name=None,
    description=None,
    prompt_templates=prompt_templates,
    add_base_tools=True,
    additional_authorized_imports=["time", "numpy", "pandas","datetime"],
)

GradioUI(agent).launch()