ancztxi / app.py
Geek7's picture
Update app.py
bac0abc verified
raw
history blame contribute delete
905 Bytes
import gradio as gr
import torchaudio
from speechbrain.pretrained import EncoderClassifier
# Load the SpeechBrain model separately
model = EncoderClassifier.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="tmp")
# Define the function to transcribe audio
def transcribe(audio):
# Load and process the audio file using torchaudio
signal, rate = torchaudio.load(audio)
# Make predictions using the SpeechBrain model
output = model.classify_batch(signal)
return output
# Define a CSS string to hide the footer
custom_css = """
footer {visibility: hidden;}
"""
# Create the Gradio interface
demo = gr.Interface(
fn=transcribe, # Function to process input
inputs=gr.Audio(sources="upload"), # Take audio input
outputs="text", # Display output as text
css=custom_css # Hide the Gradio footer
)
# Launch the interface
demo.launch()