File size: 11,212 Bytes
e3e4b80 98f764f e3e4b80 98f764f 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 855e13e e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 a66bcf0 e3e4b80 045f54c 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 4d94881 e3e4b80 8484505 e3e4b80 4d94881 f1cfffd e3e4b80 4d94881 154ce52 4d94881 dd0286a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
import warnings
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import cv2
from gradio_client import Client, file
# Suppress Gradio warnings
warnings.filterwarnings("ignore", category=UserWarning, module='gradio')
# Function to generate an image using another model
def image_gen(prompt):
client = Client("KingNish/Image-Gen-Pro")
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
# Load the processor and model for image-based QnA (LLaVA model)
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
model.to("cpu")
# Function to process images with text input
def llava(message, history):
if message["files"]:
image = message["files"][0]
else:
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
txt = message["text"]
gr.Info("Analyzing image")
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant"
inputs = processor(prompt, image, return_tensors="pt")
return inputs
# Helper function to extract text from a webpage
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
# Function to search the web using Google
def search(query):
term = query
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 3, "udm": 14},
timeout=5,
verify=None,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients for different models
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat")
# Define the main chat function
def respond(message, history):
func_caller = []
user_prompt = message
# Handle image processing
if message["files"]:
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
if new_text not in ["<|im_end|>", "<|endoftext|>"]: # Ignore special tokens
buffer += new_text
yield buffer
else:
# Functions metadata for invoking different models or functions
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
]
for msg in history:
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
message_text = message["text"]
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
response = client_gemma.chat_completion(func_caller, max_tokens=200)
response = str(response)
# Filtering and processing response
try:
response = response[int(response.find("{")):int(response.rindex("</"))]
except:
response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
response = response.replace("\\n", "").replace("\\'", "'").replace('\\"', '"').replace('\\', '')
print(f"\n{response}")
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
web_results = search(query)
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
messages = f"<|im_start|>system\n Hi π, I am Nora,mini a helpful assistant.Ask me! I will do my best!! <|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text in ["<|im_end|>", "<|endoftext|>"]: # Exclude special tokens
output += response.token.text
yield output
elif json_data["name"] == "image_generation":
query = json_data["arguments"]["query"]
yield "Generating Image, Please wait 10 sec..."
try:
image = image_gen(f"{str(query)}")
yield gr.Image(image[1])
except:
client_sd3 = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
seed = random.randint(0, 999999)
image = client_sd3.text_to_image(query, negative_prompt=f"{seed}")
yield gr.Image(image)
elif json_data["name"] == "image_qna":
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
if new_text not in ["<|im_end|>", "<|endoftext|>"]: # Ignore special tokens
buffer += new_text
yield buffer
else:
messages = f"<|im_start|>system\n π, I am Nora,mini a helpful assistant.Ask me! I will do my best!!<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
stream = client_yi.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if response.token.text not in ["<|im_end|>", "<|endoftext|>"]: # Ignore special tokens
output += response.token.text
yield output
except:
# Handle the case where JSON parsing or function calling fails
messages = f"<|im_start|>system\nHi π, I am Nora,mini a helpful assistant.Ask me! I will do my best!!<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if response.token.text not in ["<|eot_id|>", "<|im_end|>"]: # Ignore special tokens
output += response.token.text
yield output
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(layout="panel",show_share_button=False,show_download_button=True),
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=200,
cache_examples=False,
css="""footer{display:none !important}"""
)
gr.Warning("Warning: On mobile, the connection can break if this tab is unfocused or the device sleeps, losing your position in queue.", visible=False)
# Launch the Gradio app
demo.launch() |