File size: 5,651 Bytes
fed8daa
 
 
 
 
 
5e738b1
fed8daa
 
 
 
 
 
 
 
 
81bb2e1
27b64f7
000fb48
 
27b64f7
81bb2e1
5e738b1
 
 
fed8daa
 
 
 
 
 
 
 
 
 
 
 
5e738b1
 
 
 
 
 
 
 
fed8daa
000c673
fed8daa
 
 
000c673
ddda887
000c673
 
fed8daa
 
 
 
 
 
 
 
 
 
000c673
fed8daa
 
 
 
 
 
 
 
 
 
 
000c673
fed8daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e738b1
000c673
fed8daa
000c673
5e738b1
 
 
 
 
 
 
 
 
000c673
 
 
 
fed8daa
000c673
 
 
 
 
 
 
 
 
fed8daa
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import os
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from transformers import pipeline

# Initialize the Flask app
app = Flask(__name__)
CORS(app)  # Enable CORS for all routes

# Initialize the InferenceClient with your Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN")  # Ensure to set your Hugging Face token in the environment
client = InferenceClient(token=HF_TOKEN)

# Hardcoded negative prompt
NEGATIVE_PROMPT_FINGERS = """missing fingers, extra fingers, elongated fingers, fused fingers, 
mutated fingers, poorly drawn fingers, disfigured fingers, 
too many fingers, deformed hands, extra hands, malformed hands, 
blurry hands, disproportionate fingers"""

# Initialize the NSFW detection pipeline
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")

@app.route('/')
def home():
    return "Welcome to the Image Background Remover!"

# Simple content moderation function
def is_prompt_explicit(prompt):
    explicit_keywords = ["sexual", "nudity", "erotic", "explicit", "porn", "pornographic", "xxx", "hentai", "fetish", "sex", "sensual", "nude", "strip", "stripping", "adult", "lewd", "provocative", "obscene", "vulgar", "intimacy", "intimate", "lust", "arouse", "seductive", "seduction", "kinky", "bdsm", "dominatrix", "bondage", "hardcore", "softcore", "topless", "bottomless", "threesome", "orgy", "incest", "taboo", "masturbation", "genital", "penis", "vagina", "breast", "boob", "nipple", "butt", "anal", "oral", "ejaculation", "climax", "moan", "foreplay", "intercourse", "naked", "exposed", "suicide", "self-harm", "overdose", "poison", "hang", "end life", "kill myself", "noose", "depression", "hopeless", "worthless", "die", "death", "harm myself"]  # Add more keywords as needed
    for keyword in explicit_keywords:
        if keyword.lower() in prompt.lower():
            return True
    return False

# NSFW detection function
def is_nsfw_image(image):
    results = nsfw_classifier(image)
    for result in results:
        if result['label'] == 'nsfw' and result['score'] > 0.5:
            return True
    return False

# Function to generate an image from a text prompt
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
    try:
        # Generate the image using Hugging Face's inference API with additional parameters
        image = client.text_to_image(
            prompt=prompt, 
            negative_prompt=NEGATIVE_PROMPT_FINGERS,
            height=height, 
            width=width, 
            model=model,
            num_inference_steps=num_inference_steps,  # Control the number of inference steps
            guidance_scale=guidance_scale,  # Control the guidance scale
            seed=seed  # Control the seed for reproducibility
        )
        return image  # Return the generated image
    except Exception as e:
        print(f"Error generating image: {str(e)}")
        return None

# Flask route for the API endpoint to generate an image
@app.route('/generate_image', methods=['POST'])
def generate_api():
    data = request.get_json()

    # Extract required fields from the request
    prompt = data.get('prompt', '')
    negative_prompt = data.get('negative_prompt', None)
    height = data.get('height', 1024)  # Default height
    width = data.get('width', 720)  # Default width
    num_inference_steps = data.get('num_inference_steps', 50)  # Default number of inference steps
    guidance_scale = data.get('guidance_scale', 7.5)  # Default guidance scale
    model_name = data.get('model', 'stabilityai/stable-diffusion-2-1')  # Default model
    seed = data.get('seed', None)  # Seed for reproducibility, default is None

    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400

    try:
        # Check for explicit content
        if is_prompt_explicit(prompt):
            return send_file(
                "thinkgood.jpeg",
                mimetype='image/png',
                as_attachment=False,
                download_name='thinkgood.png'
            )

        # Generate the image
        image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)

        if image:
            # Check for NSFW content
            if is_nsfw_image(image):
                return send_file(
                    "nsfw.jpg", 
                    mimetype='image/jpeg', 
                    as_attachment=False, 
                    download_name='nsfw.jpg'
                )

            # Save the image to a BytesIO object
            img_byte_arr = BytesIO()
            image.save(img_byte_arr, format='PNG')  # Convert the image to PNG
            img_byte_arr.seek(0)  # Move to the start of the byte stream

            # Send the generated image as a response
            return send_file(
                img_byte_arr, 
                mimetype='image/png', 
                as_attachment=False,  # Send the file as an attachment
                download_name='generated_image.png'  # The file name for download
            )
        else:
            return jsonify({"error": "Failed to generate image"}), 500
    except Exception as e:
        print(f"Error in generate_api: {str(e)}")  # Log the error
        return jsonify({"error": str(e)}), 500

# Add this block to make sure your app runs when called
if __name__ == "__main__":
    app.run(host='0.0.0.0', port=7860)  # Run directly if needed for testing