Update app.py
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ MAX_SEED = 3999999999
|
|
36 |
default_models = models[:num_models]
|
37 |
inference_timeout = 600
|
38 |
|
39 |
-
# Inference function
|
40 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
41 |
kwargs = {"seed": seed}
|
42 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
@@ -56,14 +56,7 @@ async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
|
56 |
return png_path
|
57 |
return None
|
58 |
|
59 |
-
#
|
60 |
-
def generate_api(model_str, prompt, seed=1):
|
61 |
-
result = asyncio.run(infer(model_str, prompt, seed))
|
62 |
-
if result:
|
63 |
-
return result # Path to the generated image
|
64 |
-
return None
|
65 |
-
|
66 |
-
# Flask route to handle predictions
|
67 |
@app.route('/predict', methods=['POST'])
|
68 |
def predict():
|
69 |
data = request.get_json()
|
@@ -76,9 +69,9 @@ def predict():
|
|
76 |
prompt = data['prompt']
|
77 |
seed = data.get('seed', 1)
|
78 |
|
79 |
-
#
|
80 |
try:
|
81 |
-
image_path =
|
82 |
if image_path:
|
83 |
return send_file(image_path, mimetype='image/png')
|
84 |
else:
|
@@ -91,5 +84,5 @@ if __name__ == '__main__':
|
|
91 |
app.run(debug=True)
|
92 |
|
93 |
# You can optionally launch the Gradio interface in parallel
|
94 |
-
iface = gr.Interface(fn=
|
95 |
iface.launch(show_api=True, share=True)
|
|
|
36 |
default_models = models[:num_models]
|
37 |
inference_timeout = 600
|
38 |
|
39 |
+
# Inference function with generate_api embedded
|
40 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
41 |
kwargs = {"seed": seed}
|
42 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
|
|
56 |
return png_path
|
57 |
return None
|
58 |
|
59 |
+
# Flask API to call the generate_api function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
@app.route('/predict', methods=['POST'])
|
61 |
def predict():
|
62 |
data = request.get_json()
|
|
|
69 |
prompt = data['prompt']
|
70 |
seed = data.get('seed', 1)
|
71 |
|
72 |
+
# Make the asynchronous call to the infer function within the Flask route
|
73 |
try:
|
74 |
+
image_path = asyncio.run(infer(model_str, prompt, seed)) # Directly call infer function here
|
75 |
if image_path:
|
76 |
return send_file(image_path, mimetype='image/png')
|
77 |
else:
|
|
|
84 |
app.run(debug=True)
|
85 |
|
86 |
# You can optionally launch the Gradio interface in parallel
|
87 |
+
iface = gr.Interface(fn=infer, inputs=["text", "text", "number"], outputs="file")
|
88 |
iface.launch(show_api=True, share=True)
|