Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,39 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from random import randint
|
3 |
-
from all_models import models
|
4 |
-
from externalmod import gr_Interface_load
|
5 |
-
import asyncio
|
6 |
import os
|
|
|
7 |
from threading import RLock
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
def load_fn(models):
|
13 |
global models_load
|
14 |
models_load = {}
|
15 |
-
|
16 |
for model in models:
|
17 |
if model not in models_load.keys():
|
18 |
try:
|
|
|
19 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
20 |
except Exception as error:
|
21 |
print(error)
|
22 |
-
m = gr.Interface(lambda: None, ['text'], ['image'])
|
23 |
models_load.update({model: m})
|
24 |
|
|
|
25 |
load_fn(models)
|
26 |
|
27 |
num_models = 6
|
@@ -30,31 +42,33 @@ default_models = models[:num_models]
|
|
30 |
inference_timeout = 600
|
31 |
|
32 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
33 |
-
kwargs = {"seed": seed}
|
34 |
-
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
35 |
-
await asyncio.sleep(0)
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
print(e)
|
40 |
-
print(f"Task timed out: {model_str}")
|
41 |
-
if not task.done():
|
42 |
-
task.cancel()
|
43 |
-
result = None
|
44 |
-
if task.done() and result is not None:
|
45 |
with lock:
|
46 |
png_path = "image.png"
|
47 |
-
result.save(png_path)
|
48 |
return png_path
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS # Import CORS
|
3 |
+
from gradio_client import Client
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
+
import asyncio
|
7 |
from threading import RLock
|
8 |
+
from all_models import models # Import your models
|
9 |
+
from externalmod import gr_Interface_load # Import the model loading function
|
10 |
|
11 |
+
app = Flask(__name__)
|
12 |
+
CORS(app) # Enable CORS for all routes
|
13 |
+
|
14 |
+
# Environment variable for Hugging Face token
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
lock = RLock()
|
17 |
+
|
18 |
+
# Initialize the Gradio client
|
19 |
+
client = Client("Geek7/mdztxi2")
|
20 |
|
21 |
+
# Load models using gr_Interface_load
|
22 |
def load_fn(models):
|
23 |
global models_load
|
24 |
models_load = {}
|
25 |
+
|
26 |
for model in models:
|
27 |
if model not in models_load.keys():
|
28 |
try:
|
29 |
+
# Use your custom model loading function
|
30 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
31 |
except Exception as error:
|
32 |
print(error)
|
33 |
+
m = gr.Interface(lambda: None, ['text'], ['image']) # Fallback to a dummy interface
|
34 |
models_load.update({model: m})
|
35 |
|
36 |
+
# Load the models
|
37 |
load_fn(models)
|
38 |
|
39 |
num_models = 6
|
|
|
42 |
inference_timeout = 600
|
43 |
|
44 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
|
|
|
|
|
|
45 |
try:
|
46 |
+
# Use the gradio_client to make the API call
|
47 |
+
result = await asyncio.to_thread(client.predict, model_str=model_str, prompt=prompt, seed=seed, api_name="/predict")
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
with lock:
|
49 |
png_path = "image.png"
|
50 |
+
result.save(png_path) # Save the image to a file
|
51 |
return png_path
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error during inference: {e}")
|
54 |
+
return None
|
55 |
+
|
56 |
+
@app.route('/generate-image', methods=['POST'])
|
57 |
+
def generate_image():
|
58 |
+
data = request.get_json()
|
59 |
+
model_str = data['model_str']
|
60 |
+
prompt = data['prompt']
|
61 |
+
seed = data['seed']
|
62 |
+
|
63 |
+
# Make a prediction request
|
64 |
+
try:
|
65 |
+
result_path = asyncio.run(infer(model_str, prompt, seed))
|
66 |
+
if result_path:
|
67 |
+
return send_file(result_path, mimetype='image/png') # Send the generated image file
|
68 |
+
else:
|
69 |
+
return jsonify({"error": "Image generation failed."}), 500
|
70 |
+
except Exception as e:
|
71 |
+
return jsonify({"error": str(e)}), 500
|
72 |
+
|
73 |
+
if __name__ == '__main__':
|
74 |
+
app.run(debug=True)
|